Category Archives: Uncategorized

METALLURGY


DUCTILITY

  • A metal is ductile when it may be drawn out in tension without rupture.
  • Wire drawing depends upon ductility for its successful operation.
  • A ductile metal must be both strong and plastic
  • With many materials ductility increase rapidly with heat.
  • Is the property of a material which enables it to be drawn easily into wire form
  • The percentage elongation and contraction of area, as determined from a tensile test are a good practical measures of ductility
  • Ability to undergo permanent change in shape without rupture or loss of strength if any force applied.

MALLEABILITY

  • The ability to be hammered or rolled out without cracking.
  • Very few metals have good cold malleability, but most are malleable when heated to a suitable temperature
  • The material that can be shaped by beating or rolling is said to be malleable.

Continue reading

EFFECTS OF IMPURITIES IN FUEL OIL

Q. Write brief notes on the adverse effects that a fuel containing high value of the following may cause: (a) Viscosity (b) Density (c) Sulphur (d) Corodson Carbon Residue (e) Asphaltene (f) Vanadium & Sodium (g) Ash (h) Water

(By Kamal Hossain, Chief Engineer)

Viscosity

High viscosity of fuel may cause the following effects being using high temperature heating
– Fouling of Oil heater
– Gassing of Fuel
– Thermal expansion to fuel pump and injector component leading to seizure or sticking
– Clogging of filter

Density

High density of fuel oil means high contents of impurities . It may effect to
– Filter clogging
– High temperature require for sedimentation & purification
– Upsetting to purifiers
– Being fuel pump is volume-measuring device , produce more heat when combustion .

Ash

Natural ash are usually Silicon , Aluminium , Calcium , Iron , Nickle , Vanadium and Sodium . If high ash content may effect the following
– High density
– Defects in filtration and purification
– Deposits may effect as abrasive wear to piston rings , liner , fuel pump components , T.C turbine blades
– Dangerous effect of Vanadium and Sodium may shorter exhaust valve life.

Water

More than 1 % of water content may cause
– Corrosion on fuel pump and injector component tend to seizure.
– Misfiring of engine and stop in extreme case
– Poor combustion , reduce out put and T.C surging
– Emulsification of fuel leading to sludge formation
– Fuel foaming in mixing column
– Promote microbial degradation
– Loss of energy content and quantity of fuel.

Sludge

It may cause
– Instability of fuel
– Blockage of filters
– Upsetting of purifier operation

Asphaltenes

It is a hydrocarbon compound of solid combustible substances which are insoluble in fuel oil. Asphaltenes may cause

– Clogging of filters ,Fouling of heaters and upsetting purifier operation
– Corrosion of fuel pump’s component and seizure
– Sticking of nozzles and tend to trumpet formation
– Prolong combustion time and its flame close to liner wall and overheat , burn cyl. L.O
– Due to poor combustion , unburned products tend to abrasive wear of Piston Rings & Liners , seizure & broken piston rings.
– Fouling of scavenge port and exhaust system

Sulphur

– Produce combustion products containing SO2 & SO3 to cause cold corrosion wear of
Piston rings, Liners ,Turbocharger water cooled casing , Exhaust valve cage….. ect.
– High temperature corrosion to exhaust valve.
– Adhesion of black lacquer on the liner inner surface
– Form L.O acidity condition.

Vanadium,Sodium

May cause hot corrosion during combustion . They are formed corrosive products as SODIUM VANADATE COMPOUND when combustion temperature 530 ‘C , stick to the metal and attack the protective coating of the surface , cause hot corrosion especially to Exhaust valve , Turbocharger turbine blades and nozzle ring.

Carbon residue Poor combustion with smoky exhaust and produce depositing product effect to ….
– Trumpet formation of nozzle
– Depositing Piston ring zone tend to seizure and broken
– Remove cylinder L.O film and act as abrasive to wear Piston rings and liners, – –
– Fouling of scavenge space and inlet / exhaust ports
– Depositing in Turbocharger and corrosion to nozzle ring and turbine blades
– Fouling at Economizer and uptake

Catalytic Fines.

These are very small size of 3 ~ 100 microns, hard and abrasive compound of Alumina and Silica.
Larger parts may increase wear in fuel pump and valve components
Smaller parts below 5 micron promote Piston rings & Liner wear.

BOILER WATER TREATMENT

By Maklub Al Mostofa

Scale formation and corrosion are the main two factors that determine the efficiency of the internal parts and as well as lifetime of the boiler. Badly corroded and scaled boiler can fail within very short time.

SCALE FORMATION IN BOILER

Depending upon the sources boiler water contains various types of salts and impurities. Under operating conditions all the salts comes out of the water. These salts cause formation of scale inside the boiler. The more the water contains solids and salts the more the boiler is prone to scale formation.

Treatment:

Scale formation can be prevented in two ways.
1. External treatment:
– Use as pure water as possible.
– Proper feed water treatment.
– Keep the cascade tank clean. Maintain the cascade tank filter and feed pump filters cleaned.

2. Internal treatment:
– Carry out partial blow down of the boiler regularly and effectively.
– Regularly test the boiler water to determine the dissolved solids and salts.
– Chemical dosing should be done as per the test result to keep the boiler scale free.

Significance of regular partial blow down:
1. As the temperature rises the chloride comes out of solution that raises the boiler chloride level. Regular partial blow down from the bottom helps to maintain the chloride level.
2. Due to operating conditions the water may become acidic. Partial blow down of the water may reduce chemical dosing.
3. Remove sludge or mud from the boiler that precipitates at the bottom of the boiler.
4. Reduce the dissolved solid.
5. Reduce floating particles by scum blow down.
6. Reduce the water level in the boiler to prevent carry over or priming.

What is coagulant?

BOILER COAGULANT is a liquid sludge conditioner designed to prevent the formation of solid and sticky deposits in boilers.

How does it work:
boiler coagulant is a physical dispersant product that prevents the formation of large particles in liquid. It functions by keeping solids as small particles and prevents agglomerations from forming.
Boiler coagulant is primarily used in conjunction with hardness / phosphate control. The solids can be removed by the blow down as usual.
In addition boiler coagulant can help to remove small amounts of oil contamination if it arises, by blow down. Oil contamination must of course be stopped if it has arisen.

Boiler coagulant prevents the formation of adherent deposits and sludge in boilers and thereby reduces clean-downs.

Dosing Instructions
Normal dosage is 20ml daily/tone of boiler water capacity. Typically this equates to 0.1-0.3 liters/day. This is the recommended initial dose.
Boiler coagulant should be dosed directly to the boiler via the bypass pot feeder installed in the boiler feed water line.

Why the chloride level is always higher in the boiler than the condensate water in the cascade tank?
Answer: The water enters the boiler from the cascade tank will evaporate .Produced steam is very fine and will contain so chloride as it is heavier .So the chloride will remain in the water drum. As more feed water will enter the boiler the chlorides will be added .This process is continuous and if the chlorine id not blown down regularly it will go beyond limit though using distilled water.
The feed system is also prone to atmospheric contamination (sea environment is salty) at various points of the feed system.

HARD AND SOFT WATER:

Boiler feed water quality is most important factor that contribute the boiler efficiency. Poor control or treatment of the feed water could lead the boiler to be damaged within very short time.
Depending upon the purity boiler water be divided into two types
– Soft
– Hard

Hard water contains scale-forming impurities while soft water contains little or none.

Hardness is caused by the presence of the mineral salts of calcium and magnesium and it is these same minerals that encourage the formation of scale.

There are two common classifications of hardness:

 Alkaline hardness: it is also known as temporary hardness because the hardness is removed by boiling. Calcium and magnesium bicarbonates are responsible for alkaline hardness. The salts dissolve in water to form an alkaline solution. When heated up the salts decompose to release carbon dioxide and form soft scale or sludge.
.
Non-Alkaline Hardness Salts also known as permanent hardness salts are due to the presence of sulphates, chlorides, nitrates and silicates of calcium and magnesium. With the exception of silicates and the calcium sulphate, the permanent hardness salts are all very soluble in water and do not normally produce scale, but they are electrolytes and their presence, therefore, favours corrosion by galvanic action.
These salts precipitate out of solution as the temperature rises, and form hard scale, which is difficult to remove.
Silica can lead to hard scale and react with calcium and magnesium salts to form silicates which can severely resist heat transfer across the fire tubes and cause them to overheat.

What is dissolved oxygen?
Why it exists in boiler water?

Dissolved oxygen (DO) is the amount of oxygen (O2) dissolved in the water.

Oxygen enters the water at the surface of the water where exchange between the atmosphere and the water can take place.

The amount of dissolved oxygen that the water can hold depends on
– The temperature. DO reduce as the salinity increases.
– Salinity of the water. DO reduces as the temperature rises

How dissolved oxygen is removed where no mechanical de-aerators are used ?

The condenser is a heat exchanger which removes the latent heat from exhaust steam so that it condenses and can be pumped back into the boiler. This condensing should be achieved with the minimum of under-cooling, i.e. reduction of condensate temperature below the steam temperature. A condenser is also arranged so that gases and vapors from the condensing steam are removed
It is also done by chemical dosing.
Cascade tank also assists in removing oxygen as the temperature is maintained within 80-90 degree celciuous.

Why it dissolved oxygen is dangerous?

Boiler water ionizes into H+ and OH- ions. Dissimilarity in the ferrous metal forming the boiler surface will cause the surface to become partly positive and partly negative. The positive H+ ion attracted by negative cathodic area and by taking one electron it becomes H atom. While the negative OH- ion attracts positive anodic area and will produce ferrous hydroxide. If the oxygen is present it will react with ferrous hydroxide and corrode the boiler.
If the boiler water is properly alkalized and does not contain dissolves oxygen the H atoms will form a stable layer on the metal surface. In still water the ferrous hydroxide will remain insoluble and form a protective layer of magnetite in contact with the iron and no further corrosion will take place.

The main purpose of boiler and feed water treatment is to have a scale free and corrosion free boiler internals.
To prevent corrosion the boiler tubes needed to be passivated. Corrosion occurs when such passivated layer of magnetite becomes unstable or when chemicals are allowed to come between it and the base metal.

What is corrosion?

Oxidation: it is the chemical process by which metals gives up electrons.
Reduction: it is the gain of electrons in a chemical reaction. It is also known as redox. It is the opposite of oxidation.
Cathode: The cathode of a device is the terminal where current flows out..
Anode: An anode is the electrode in a polarized electrical device through which current flows in from an outside circuit.

IONS are the charged particles of substances. Ions are of two types
– Positive Ions
– Negative Ions

CHEMICAL COMPOSITION OF WATER:

pH elaboration is power of hydrogen. It is defined as the reciprocal logarithm of hydrogen ion concentration in water.

We know, water is the composition of hydrogen and oxygen. When it ionises splits into OH- & H+.
1liter water contains 10-14gm ions at 25 degree C. At neutral condition it contains 10-7gm H+& 10-7 gm OH- ions.
If OH- ion concentration increases it becomes alkaline.
If H+ ion concentration increases it becomes acidic :
The pH value is influenced by temperature.
pH value can be changed by chemical dosing.

Corrosion of boiler metal:

  • It is an electrochemical reaction of iron where corrosion occurs at cathode as the boiler metal oxidizes and dissolves.
  • This metal is extracted from the natural ore by reduction process in the refiner. This metal has natural tendency to go back to its natural state through oxidation and interaction with suitable environment. This natural tendency is the driving force of corrosion.
  • It is the general tendency of metals to be oxidized. Corrosion is a reduction/redox reaction.
  • Corrosion occurs at the anode, where metal oxidizes and dissolves.
  • At cathode, reduction takes place
  • Reaction at anode:  At anode Iron is oxidized to Fe++ , ferrous ion , Fe = Fe2+ + 2e¯

  • Reaction at cathode:    O2 gets reduced to OH- ions at cathode, Fe2++ ions are combining with OH- ions to form Fe(OH)2, ferrous hydroxide, Fe2+ + 2OH¯ = Fe(OH)2.

If the boiler water is properly alkalized and does not contain dissolves oxygen the H atoms will form a stable layer on the metal surface. In still water the ferrous hydroxide will create a protective layer of magnetite and no further corrosion will take place.

What is magnetite layer in boiler?

Magnetite is an iron oxide, [Fe3O4]. It deposits in the form of thin layer on boiler steel surface and passivate the surface and thus it resists the influence of water and contaminants to further react with the steel material.
Magnetite is formed on clean, pickled steel by two reactions:

1. Electro chemical reaction that takes place as follows:
3Fe (OH)2 = Fe3 O4 + H2 + 2H2O
The iron hydroxide is initially produced by reaction between iron and water. The reactions start around 100C and increase as the temperature increases.
2. Hot oxidizing reaction when magnetite is formed directly at temperatures 300 C or approximately at 30 bar boiler pressure. The reaction follows this route:
3Fe + 4H2O ( 300C+) = Fe3 O4 + 4H2

Types of corrosion:
a. Galvanic corrosion
b. Acidic corrosion
c. Caustic corrosion
d. Hydrogen corrosion
e. Stress Corrosion
f. Corrosion fatigue
g. Pitting corrosion

Galvanic corrosion:

We all know it needs two dissimilar materials to create a galvanic cell. Boiler tube material is steel. Then how the galvanic cell forms?
Boiler condenser tubes are made of copper and boiler tube material is made of steel. Copper may react with oxygen and may be carried as copper oxides inside the boiler. This two dissimilar materials are mainly responsible for galvanic corrosion.
Galvanic cells also form due to temperature difference, scales, salts, bacteria, oil contamination, conductivity, scratches in the material etc.

Acidic corrosion:

Acidic water has an excess of hydrogen ions which leads to hydrogen evolution. The Protective film of hydrogen gas on the cathodic surface breaks down as the hydrogen combines and bubbles off as diatomic hydrogen gas.
Acid corrosion may also occur due to heavy salt water contamination or by acids leaching into the system from demineralisation regeneration.

Oxygen: We know at cathode, Fe2++ ions are combining with OH- ions to form Fe(OH)2, ferrous hydroxide, Fe2+ + 2OH¯ = Fe(OH)2
If oxygen is present it will react with ferrous metal surface to form red iron oxide F2O3 result in pitting corrosion
The ferrous hydroxide then combines with oxygen and water to produce ferric hydroxide, Fe (OH) 3, 4 Fe (OH) 2 + O2 + 2 H2O –> 4 Fe (OH)3.
Ferric hydroxide dehydrates to rust,
F2O3, Fe (OH)3 ⇌ FeO(OH) + H2O . FeO (OH) ⇌ F2O3 + H2O.
Rust consists of hydrated iron (III) oxide, F2O3·nH2O and iron ( III) oxide – hydroxide ,(FeO(OH), Fe(OH)3).

CO2: React with water to form carbonic acid, which reduce the pH of the water and accelerate corrosion

Ammonia: Attack the copper base alloy in the present of oxygen

Hydrogen attack:

Hydrogen irons are generated by concentration of acid under a hard dense deposit. It can penetrate the grain boundary of tube metal and react with carbon and produces methane gas. This carbon loss weakens the tube metal and methane gas exerts a pressure which separates the grains of tube.
Hydrogen attack can also occur when hydrogen is released by caustic corrosion.

Caustic corrosion:

Caustic: Caustic is the other form of solid alkali added to the boiler
Caustic corrosion (gouging) occurs when caustic is concentrated and dissolves the protective magnetite (Fe3O4) layer.
This form of attack can take place at high pressures due to excessive concentrations of sodium hydroxide. The sodium hydroxide forms local concentrations nearly coming out of solution and forming thin film close to the heating surface. This breaks down the magnetite layer and then reacts with the steel to produce a soluble compound which then deposits on the surface in the form of a layer of loose porous oxide.

Corrosion fatigue:

While high temperature surface suffers from poor circulation of water and the surface is under stress it may form a series of f line cracks in the wall. Corrosive conditions aggravate the condition.

Stress Corrosion:

It needs two factors to act together which leads to stress corrosion.
– Stress
– Corrosive environment
Due to corrosive action protective layer may break down and form a local weak point. If this area is subjected to heavy alternating stress fatigue crack may result. The bare metal will then be subjected to further corrosive action causing the process to continue. Mechanical stress of boiler parts may be due to mal-operation of the boiler, raising steam too rapidly from cold, missing or poorly connected internal feed pipes, fluctuating feed temperature and steaming conditions.

Pitting corrosion:

Corrosion is mainly a local corrosion. It needs relatively a large cathodic area and a small anodic area. Hence the intensity of attack at the anode is high. Large area differences could be caused by mill scale, oxide films, acid pockets of water, scale from salts, pores or crevices, oils, gases and ingress of metals into the boiler. Corrosion rate increases with temperature, hence where metal surfaces are hottest failure may take place earlier.

What is caustic hide out?

Caustic is the other form of alkali added to the boiler
As the name implies the caustic present in the boiler water remains untraced during water test. Hence it is termed as caustic hide out.
Due to the rapid evaporation the sodium hydroxide forms local concentrations that come out of solution and forming thin film close to the heating surface.
However if the evaporation rate is reduced the hydroxide is released back into normal circulation and the alkalinity is apparently restored. This phenomenon is referred to a caustic hideout.
This breaks down the magnetite layer and then reacts with the steel to produce a soluble compound which then deposits on the surface in the form of a layer of loose porous oxide.

Q. When a steam boiler water tube is started leaking,
(a) How do you know?
(b) How will you check the leaking source?
(c) What are the remedies available?
(d) How will you repair to proceeds the rest of journey?

How to know:
1. As steam consumption is more feed pump will be continuous running.
2. Excessive feed water consumption from cascade tank or feed water tank.
3. If the large amount of leakage, boiler water level will be low, steam pressure will be drop and continuous firing of boiler.
4. Some water comes out from furnace cover.
5. White smoke emitting from boiler uptake.

The possible sources of the entry of water may be considered at
1. The leakage tubes.
2. Distorted furnace crown plate.
3. Furnace shell plate opposite of the burner opening due flame impingement.
4. The lower section plate of furnace due damage brick-works.

The possible causes of leakage:
1. External wastage: due to waterside corrosion and pitting. Corrosion and pitting may occur due to
– Poor quality feed water
– Ineffective treatment

2. Uneven thermal expansion: this can happen between tube and tube plate due to local overheating. Overheating could be due to low water condition, heavy scale, oily deposits or forcing of the boiler.
3. Deformation of tube plate: Under pressure would have the overheating effect that tube fail at the tube end of the tube plate.
Check procedure:

For water tube boiler (Z boiler):

1. Stop the firing
– open up the combustion chamber,
– Fill up the boiler water level to full.
– leakage can seen easily be seen & identify the individually boiler water tube

For smoke tube boiler:
– Stop the firing
– open the smoke side drain valve,
– If there is any leakage water will come out.

Once tube leakage is confirmed steps will be taken to identify the leaking tube.

– open up the fire side cover
– fill up the boiler water level until all smoke tubes are flooded,
– We can easily to check which one is leaking ligaments.

Remedies
Repairing could be carried out by inserting tube stopper or new tube renewal.
The defective expanded tube is found originally expanded and bell-mouthed at the tube ends. The first step is cropping at the ends about 50mm from the tube plate and chisel off. The remaining pieces are removed by chiseling and knocking out after heating and cooling to achieve shrinkage.
Then the tube holes to be cleaned and polished before dye penetrant test for any cracks. Minor blemishes at the tube hole are made good with light rolling by an expander.
The usual diametrical clearance between the tube and tube hole being about 1.5mm, this must be taken into account while renewal of this tube. The tube ends of the new tube are cleaned thoroughly and carefully roller expanded into the hole in the tube plate.
When the new tube is placed in the tube hole, they must project through the tube plate by at least 6mm. The bell mouthing is to be 1mm for every 25mm of outside diameter plus 1.5mm.

SCAVENGING AND TURBOCHARGING (QUESTIONS & ANSWERS)

By Maklub Al Mostofa

Q. What is scavenging? Name the types of scavenge used for large two stroke engine. Describe the advantage of Uniflow scavenging.

SCAVENGING:
It is the removal of residual exhaust gas and its replenishment with fresh air in an internal combustion of the engine. The fresh air intake and exhaust gas expel operation are not simultaneous fully but some degrees of overlap period are provided for better efficiency.
There are 3 types of scavenging process.
1. Loop scavenging
2. Cross scavenging
3. Uniflow scavenging

Loop scavenging:
In this type of scavenging air passes over the piston crown and rises to form a loop. Ports are cut in the cylinder liner wall for this operation. The scavenge ports and exhaust ports are in the same side of the liner.

Image credit: Introduction To Marine Engineering by D A TAYLOR

Cross scavenge:
In this type of scavenging the scavenge air is directed upwards and expelled from the opposite side of the liner. Scavenge and exhaust Ports are cut in the cylinder liner wall for this operation. The scavenge ports and exhaust ports are in opposite side of each other.

Image credit: Introduction To Marine Engineering by DA TAYLOR

Uniflow scavenging:
In this type of scavenging scavenge air enters through ports near the bottom of the liner then travels straight up the liner and forcing the exhaust gas to expel from the top through valve arrangements. This gives maximum efficiency of scavenging.


Image credit: Introduction To Marine Engineering by D A TAYLOR

Advantages of Uniflow scavenging:
• Highest efficiency of scavenging and Very little amount of exhaust and scavenge intermixing.
• Provides higher degrees of overlapping period hence increasing efficiency of the engine.
• Allow simplicity of liner as fewer ports are cut.
• More liner cooling is achieved/Thermal stresses are less compared to other method of scavenging.
• Avoid long piston skirt.
• Make satisfactory & economical of cylinder lubrication/ Cylinder L.O. consumption is reduced.
• Efficient design for long stroke engine.

“Pulse” system:


Image credit: MARINEDIESELS.UK.COM

 The Pulse system takes advantage of the higher pressures and temperatures of the exhaust gases during Blow—down period and with rapidly opening of exhaust valves or ports.
 The gases leave the cylinder at high velocity as pressure energy is effectively converted into kinetic energy to create a pressure wave or pulse in the exhaust pipe.
 The pipe so constructed in small diameter is quickly pressurised and boosted up to form a pressure pulse.
 The pulsating pressure waves reach up to the turbine nozzles and further expansion takes place.
 The pressure in the exhaust pipe before the turbine shows a cyclic variation as is evident from the pressure crank angle diagram.

Advantages of pulse system:
1) High available energy at turbine.
2) Good performance at low speed & part load.
3) Good turbocharger acceleration.
4) Highly responsive to any changing load due to small volume of exhaust ducting
5) Required no scavenge assistance at any changing load

Disadvantages:
1. The exhaust grouping is complicated.
2. Different sizes of exhaust pipes are needed for spare.
3. Exhaust tuning and grouping requires special attention to avoid back flow and incorrect tuning could seriously affect the engine performance.

Constant Pressure System:

Image credit: MARINEDIESELS.UK.COM

 In the constant-pressure system, exhaust gases from all cylinders pass into a common large diameter exhaust manifold.
 This is of sufficient capacity so that the intermittent exhaust from the different cylinders does not cause pressure fluctuations.
 Because of the fairly constant gas pressure and temperature at the turbine inlet; it operates at about its optimum efficiency.
 This system is most suitable for high output engines, and there is no need to group the cylinder exhausts into multiples of three.
 A major disadvantage of the constant-pressure system is that when running at reduced speed and especially when starting up, the pressure energy available at the turbine inlet is insufficient to drive it fast enough to supply the quantity of air at the scavenging pressure necessary for efficient scavenging and combustion.
 Therefore, it is necessary to be made an additional source of air compression, such as reciprocating pump or turbo blower.

Turbocharger Arrangement in Constant Pressure System:

• No exhaust grouping required and pipe distribution is simple.
• Exhaust gases enter into large common manifold and then to turbine
• Firing order not considered

Advantages:
1. Good performance in high load.
2. More suitable for high output engine.
3. There is no need to group the cylinders exhaust into multiple of three.
4. High turbine efficiency due to steady flow of exhaust.
5. Reduction in SFOC (Specific Fuel Oil Consumption)

Disadvantages:
1. When running at reduced speed and starting up low available energy at turbine. Thus it supplies inadequately air quantity of the scavenge pressure necessary for efficient scavenging and combustion.
2. It requires Auxiliary Blowers.
3. Poor response in changing load.

Turbocharger Surging:

• It is the aerodynamic phenomena which produces a back flow of air from discharge to suction side (impeller and diffuser) when the discharge volute pressure exceeds the pressure build up in the suction side and it causes heavy noise and vibration of turbocharger.
Causes of Turbocharger Surging:

1. Suddenly load change by heavy sea
2. Scavenge space fire
3. Exhaust trunk fire
4. Poor power balance
5. Dirty nozzle and blades
6. Individual cylinder misfire
7. Chocked scavenge /exhaust ports
8. Incorrect matching of turbocharger to engine.
9. Poor scavenging or leaky exhaust valve

Advantages of Inter Cooling the Charged Air:
• Reduce scavenge air temperature
• increase the density of air delivered to the cylinders
• Increasing the power output delivered by the engine.
• Cooled scavenge air reduces cylinder and exhaust gas temperature at a given power level.
• Maintain temperatures within the acceptable limits.

Types of Turbocharger Lube Oil System
There are two methods of lubrication:
1. Own sump
2. External lube oil supply system

Types of Turbocharger Bearings

Q. Describe the type of T/C bearings. Discuss their strength & weakness.

Ans: There are two types of T/C bearings:

1. Sleeve Type.
2. Ball or roller type.

Ball type bearing (rolling type):
The ball and roller bearings are mounted in resilient mountings incorporating spring damping to prevent damage due to vibration. These bearings have their own integral oil pumps and oil supply, and have a limited life.

Advantages of ball or roller type bearing:
• Less friction losses.
• Minimal lubrication
• Greater alignment accuracy.

Disadvantages of ball or roller type bearing:
• More expensive.
• Limited life time
• Need higher grade lubrication.
• More susceptible to vibration and fatigue

Sleeve type bearings:
• Sleeve type bearings are lubricated by external L.O supply system. This is achieved either by
– Gravity from independent header tank situated about six meters above the bearings to ensure that LO pressure never drops below 1.6 bar. Or by
– A main L.O pump leads to the bearings with a separate L.O pipe line. It has also gravity tank in case of failure of L.O supply. The system incorporates fine filters to avoid impurities and foreign particles.

Advantages of sleeve type bearing:
• Load carrying capacity is more.
• It can run at higher temperature.
• Better inlet flow.
• Shorter rotor length
• Higher efficiency under full load condition.
• Time between overhauling is more than the other types of bearings.

Disadvantages of sleeve type bearing:
• At low speed/load create high friction.

Function of Labyrinth Seals:
• Labyrinth seals are of specially designed metallic fin type seals that separate the bearings from the blower and turbine.
• These seals are sealed by air supplied from the compressor volute casing is led into a space to prevent oil entering the blower and to prevent contamination of the oil by the exhaust gas.

Q. What is exhaust tuning?
• Ans: Exhaust tuning is the arrangement of exhaust pipe lay out with suitable length & proper v/v timing to exhaust into the same pipe without affecting the engine performance.

Q. How the exhaust of one cylinder is prevented from interfering the scavenging of another in the pulse system?

Answer: In pulse system, the exhaust of one cylinder is prevented from interfering the scavenging of another as follows.
– Exhaust system is tuned so that the manifold pressure pulsation is not reflected back to engine as backpressure.
– As the exhaust valve of a diesel engine opens, the gases in the cylinder rapidly expand and gain velocity and kinetic energy as they pass into the exhaust pipe.
– As the exhaust gas travels through the manifold it causes partial vacuum behind it.
– The cylinders are so connected to a common exhaust pipe so that the exhaust valve of the second cylinder is opened when the exhaust from the first cylinder has created a vacuum in the pipe
– Exhaust from the second cylinder will be discharged more easily.
– Thus the tuned exhaust system with the exhaust pipes a suitable length and arranging for two or three cylinder with suitable exhaust valve timing prevented from interfering the others.

Q. State the indication of scavenges fire.

Ans: Indication of scavenge fire:
• High exhaust temperature of corresponding unit.
• High local temperature in scavenge trunk.
• Black smoke in exhaust gas.
• Burning smell
• Surging of T/C.
• Flame, spark or smoke emitted from the scavenge drains.
• Loss in power, irregular and fluctuating rpm of engine.

Q. Describe the causes & prevention of scavenge trunk fire?

Ans: Causes of scavenge fire:
• Accumulation of unburned fuel or cylinder L.O. in scavenge trunk.
• Blow past of the engine due to over load or bad piston rings..
• Bad combustion due to bad fuel management.
• Faulty injector and fuel pump timing.
• Excessive cylinder lubrication.
Prevention of scavenge fire:
• Regular draining, cleaning and monitoring of the scavenge space.
• Correct rate of cylinder lubrication.
• Proper maintenance & correct adjustments of piston rings, cylinder liner and fuel injection equipments.
• Ensure balanced engine.
• Safety devices such as electrical temperature sensing, pressure relief valves should be fitted in the scavenge trunk.

Q. How scavenge fire can be avoided? What are the safety devices incorporated in an engine for scavenge fire.

Ans: Step to avoid scavenge fire:
• Proper maintenance of the fuel injection equipments, piston rings as per maker instruction.
• Not to over load the engine.
• Periodically cleaning and inspection of scavenge trunk.
• Regular draining of scavenge trunk.
• Monitor the under piston scavenge space temperature

Safety devices for scavenge trunk:
• Scavenge trunk relief valve.
• High temperature sensing device with alarm.
• Fixed fire extinguishing system.
• Sight glass on scavenge drain line.
• Non-return valve.

Q. Describe the action to be taken in case of scavenge fire.

Action to be taken:
• Activate fire alarm.
• Inform bride & chief engineer.
• Stop the engine but L.O. pump keep on running.
• Engage turning gear & rotate the engine.
• Apply fire extinguishing medium to scavenge trunk.
• Arrange boundary cooling.

For more details, you can visit the the link:                                  http://marinestudy.net/diesel-engine-scavenge-fire/

Q. With reference to large T/C state-
a) How air & gas tightness between rotor & casing achieved?
b) Explain how the gas can raise the pressure of air higher than its own?
c) What is the purpose of nozzle ring?

Ans: a) Air & gas tightness between rotor & casing achieved by allowing some of the air from compressor outlet through a labyrinth arrangement which act as a seal.
b) The gas can raise the pressure of air higher than its own because of T/C.
• The inducer guides the air flow smoothly into the eye of impeller which throws the air outwardly increasing velocity due to centrifugal force at high rotational speed.
• The diffuser reduces velocity by converting kinetic energy into pressure energy and leads the air to the volute casing.
• The volute casing further decreases the velocity and increases the air pressure.

c) Purpose of nozzle ring:
• Expand the exhaust gas and direct exhaust gas to turbine blade.
• Convert the pressure energy of gas to kinetic energy giving a high velocity.

Q. Purpose of inducer.
Ans: .
• The purpose of inducer is to guide the air smoothly into the eye of the impeller.
• It also takes shock of the incoming air therefore supplying smooth air into the impeller.
Function of Diffuser in turbochargers?
• To direct the air smoothly into volute casing
• Convert kinetic energy to pressure energy.
What is K value in turbochargers?
• It is the distance between the rotor shaft end and the flange of bearing cover measured by blower side.
• It is critical clearance necessary to avoid contact rotating impeller and stationary blower casing cover in case of thrust bearing worn out.

Q. With reference to T/C give reasons for corrosion on the: a) gas side b) air side c) water side.

Ans: Reasons for corrosion on gas side:
• Poor combustion and carryover of oil causes carbon build up in nozzles and blades. It prevents proper heat exchange.
• Oxide of sulphur from combustion may cause acidic corrosion under light load with low exhaust temperature.
• Vanadium & sodium ash from fuel combustion may deposit & causes local burning.
• Deposit of calcium sulphate cylinder L.O. may causes corrosion.
Reasons for corrosion on air side:
• Oil vapour & Dust from engine room may sucked by the compressor & causes corrosion on air side.
• Salty moisture which is present in the air at sea sucked by the compressor & causes corrosion.
Reasons for corrosion on water side:
• Water side may be corroded by electro- chemical if the pH value of water is low i.e. water is acidic.
• If there is inadequate protection against sea water corrosion.
• Improper cleaning schedule or PMS.

Q. With reference to the T/C state-
a) Why turbine blades are loosely attach to the rotor?
b) How axial movement of the turbine blade is prevented?
c) How blade vibration is dampened over a wide range of speed?
d) What is the purpose of sealing air?

Ans:
a) The root is usually a slack fit to allow for differential expansion of the rotor and blade and to assist damping vibration. Blade roots are of fir tree shape which gives positive fixing and minimum stress concentration at the conjunction of root and blade.
b) Axial movement of the turbine is prevented by fixing the locking strip.
– In case of ball & roller bearing turbocharger axial thrust is balanced by lamina damping spring assemblies in bearing housing.
– In case of sleeve type bearing turbocharger axial thrust is balanced by sealing air which is fed to the chamber behind the turbine disc from compressor outlet at sufficient r.p.m. of rotor.
– But at start up, shut down & very low speed axial thrust is taken by thrust bearing.
c)
d) Blade vibration is dampened over a wide range of speed by binding the blade with a lacing wire. The wire passes through holes in the blades and damps the vibration due to friction between the wire and blade. It is not fixed to each individual blade.

IMAGE CREDIT: MARINEDIESELS.UK.COM

e) Purpose of sealing air:
• Seal the labyrinth gland to protect L.O. contamination by exhaust gas at turbine side.
• Seal the labyrinth gland to protect L.O. & air mixture at blower side.
• Cool the rotor shaft & turbine disc.
• Oppose the axial thrust towards compressor.

Q. With reference to the T/C state- Cooling water casing got holed, how to run T.C?

Internal water leakage:
– Stop the engine.
– Stop water supply
– Arrange compressed air supply as coolant.
– Attention must be paid to the operating temperatures especially for the turbine end bearing.

Q. Advantage of charge air cooler.
Ans:
• Increased density of air ( allow a greater mass of air to be compressed)
• Increases scavenge efficiency.
• Increases output power.
• Increases fuel burning capacity.
• Engine is maintained at safe working temperature.
• Reduced thermal stress on piston rings, piston & liner.

Q. How will you know turbocharger air filter chocked?

Ans: Filter condition can be assessed by the following parameters and symptoms:
• Greater differential pressure at turbo charger filter.
• Reduced engine power.
• Black smoke from the funnel
• Less Scavenge pressure
How will you run engine in case of turbocharger failure?
• Engine to be stopped.
• Rotor to be blocked
• Exhaust gas to be by-passed the turbocharger
• Run engine with reduced speed with remaining turbocharger
• Use Auxiliary Blower
• Maintain all temperature and pressure of fuel, cooling water and lubrication within limit

Q: During normal engine operation a turbocharger rapidly loses speed and the speed reduction is accompanied by appreciable noise.
(a)State with reasons the possible causes.

The two factors of loud noise and rapid speed reduction indicates that rotational
friction has dramatically increased, or the rotor is in contact with the stator, which
could be due to
◊Bearing failure: Bearing failure will affect the rotor clearances, causing the rotor to contact the stator. Bearing may fail due to
– Lack of lubrication
– Dirty lubricant
– Lack of cooling
– Excess vibration
– Failure due to fouling
– Failure of the resilient mounting
– Over running hour.
– Faulty sealing system.
◊Mechanical damage to the rotor: If any component from the combustion chamber is admitted to the exhaust side of the rotor, the rotor will be imbalanced and may leading to possible bearing failure.
◊Failure of the water coolant casing: This will admit water to the gas inlet and cause a reduction in the rotor speed

b. State with reasons the factors which may limit engine operating speed with the turbocharger out of operation

Ans:

The exact power limit with a defective turbocharger will depend upon the actual configuration of the system and how many turbochargers remain in operation
The following factors need to be considered when operating the engine:
◊Exhaust temperatures: The actual operating conditions should be taken into consideration and engine manual would be consulted as to the maximum limit
◊Exhaust smoke levels: Exhaust color should be monitored. Allowance should be made for the change of rate acceleration to prevent excessive thermal load.
◊Maximum engine power: This will be limited due to the factors stated above, and this will probably be approximately 50% power with the loss of one of the two turbochargers.
Hence the engine power would be reduced in consideration with all the above factors.

With reference to turbo-chargers:
a) state how the in-service performance checks are undertaken for EACH of the
Following:
i) the gas side
ii) the compressor
iii) the suction filter
iv) The after cooler
b) State with reasons the action require to maintain satisfactory performance of
i) The turbine
ii) The compressor
b) Should in-service vibration be experienced state with reasons the possible causes?

GAS SIDE: The main monitoring data is the temperature differential across the T/C for a given turbocharger speed. It gives an indication of energy converted by the gas side, i.e: nozzle ring and blade. The fall off performance of these components would be mainly due to fouling.

COMPRESOR SIDE: The compressor performance would be reduced by fouling of the compressor wheel and diffuser. This fouling would also cause the scavenge air pressure to fall, whilst the
T/C was maintaining a stable speed and all other parameters were normal. Hence the delivery pressure of the compressor would be monitored.

SUCTION FILTER: The suction filter performance can be checked by the followings:
– Scavenge air pressure
– Pressure drop across the filter. A manometer fitted across the filter will show an increase in differential pressure.

AFTER COOLER:
The after cooler performance would reduce when fouling is present.
– If the fouling is at the air side this would be monitored by measuring the air pressure drop across the cooler.
– If the fouling is at the water side this would be monitored by the reduction in temperature difference between the cooling water inlet and outlet.

The performance of the turbine is maintained by:

– The fuel combustion should be kept to an optimum condition.
– The cylinder oil doses should be avoided.
– Regular in-service cleaning, The in-service cleaning can be carried out using either dry cleaning involving dry particle cleaning, and/or water washing of the turbocharger using warm water and air blast .
– Manual cleaning of the turbocharger on a yearly operational running hour routine.

The performance of the compressor is maintained by:
– Regular in-service cleaning, supplemented by manual cleaning of the compressor and diffuser on a yearly operational running hour routine.
– The in-service cleaning can be carried out using a small quantity of warm water injected into the turbocharger suction housing at full T/C speed. This cleaning can be carried out twice weekly.
– The air drawn into the compressor should be as clean as possible. The air filter should be maintained in good condition.

The T/C can vibrate due to the following causes:

– Rotor imbalance following inadequate in-service cleaning.
– Vibration can be caused by the blade failure due to corrosion, fatigue, failure of a portion of lacing wire.
– Rotor imbalance due to failure of the rotor support bearings.
– Rotor imbalance due to rotor damage from an object displaced from the cylinder, such as a broken piston ring or exhaust valve.
– Surging of the turbocharger, when the unit is operated close to the surge line possibly due to a fouled hull.

– Vibration transmitted to the turbocharger unit from an adjacent machinery unit.

Following a recent turbocharger overhaul it is observed that the scavenge air pressure is lower than it was previously and the engine power output is also reduced.
a. State, with reasons, the possible causes of the problem.
b. State, with reasons, what engine operational information should be gathered in order to enable the possible cause of the problem to be detected.
c. Explain how the defect may be rectified.
d. State the instructions which should be issued with respect to future turbocharger overhauls in order to prevent similar incidents.

Answer:

a.
A turbocharger overhaul consists of removing the rotor and nozzle ring for inspection and cleaning, renewing the bearings where necessary, inspection of the labyrinth glands, cooling water spaces and gas inlet protection grid.
Causes of low scavenge pressure are:
– Dirty air filter. Overlooked cleaning the air filter before refitting.
– Scavenge dump valves left open.
– Damage to turbine blades. This could have occurred when removing refitting rotor. The efficiency of the turbine will be reduced if the blade profile is damaged. May also cause vibration.
– Damaged impeller; again while removing or refitting. See above.
– Defective or incorrectly fitted bearings allowing rotor to rub against casing labyrinth glands may be damaged as a result.
– Foreign bodies in protection grid, nozzle ring, turbine blades, compressor or diffuser. Compressor axial clearances incorrect due to badly fitted bearing; allowing air to leak back from discharge to suction. May also cause back of compressor wheel to rub against casing.
– Waste gate or a charge air by pass valve, may be jammed open or not operating correctly (if fitted)

b. Operational information to be gathered:
– Turbocharger speed: The faster the turbocharger revolutions, the greater mass flow of air produced, and the higher the scavenge pressure. Slow turbocharger rpm could be an indication of all of the above faults.
– Vibration (and noise): Vibration can indicate damaged unbalanced rotor; noise indicates rotor in contact with casing.
– Exhaust gas inlet temperature to turbo-charger: A higher than normal temperature (along with higher exhaust valve temperatures)are an indication of a high exhaust gas back pressure could be caused by choked nozzle ring.
– Exhaust gas temperature difference across turbine: A smaller than normal differential will indicate that the exchange in energy is not taking place across the turbine.
– Pressure drop across air inlet filter.
-Temperature differential across air cooler water inlet and outlet.
– Surging of the turbocharger
c.
If the T/C is vibrating or unusually noisy:
– Engine must be stopped and the cause investigated. This will entail removal of the rotor. Check compressor wheel, shaft, and labyrinth, turbine wheel for signs of damage or rubbing. Check casing and nozzle ring for damage. If damage has occurred then it must be rectified before the rotor is rebalanced and refitted with the correct bearings.
If there is no vibration or noise:
– Check dump valves, bypass and waste gate if fitted.
– Check that the air filter is clean.
– clean the air cooler on the air side.
If none of these are successful, then it may be necessary to open up the turbo-charger and check that it has been assembled correctly with correct axial clearances and that there are no blockages in the nozzle ring or protection grid.

d.
The overhaul of the turbocharger should be overseen senior member of the engineering staff as appointed by the Chief Engineer.
– Only chemicals recommended by the manufacturer are to be used at the recommended strengths.
– After cleaning the turbine rotor and compressor wheels are to be examined closely for any sign of damage before re-assembly.
– New bearings to be fitted if the running hours are within 20% of the recommended maximum hours for the bearing.
– Only manufacturers spares, sealed in tins are to be used.
– Axial clearances must be checked and recorded after comparison with the original clearances
– Ensure that no gloves, rags, tools etc are left in the casing or exhaust pipes before boxing up, and that the protection grids are clean and in position.
– The air filters and air cooler is to be cleaned.
– Bypass valve and waste gates are to be checked for correct operation on completion of overhaul.

Turbocharger vibration:
Sudden vibration:
– Sudden imbalance due to blade damage
– Sudden imbalance due to partial dirt removal.
– Breakage of damping wires
– Breakage of resilient mounting.
– Bearing failure
– Poor cylinder combustion.
– Damaged support
– External excitation

Remedial action:

– Regular and effective in service cleaning.
– Effective LO management.
– Regular inspection of bolts and casing.
– Maintain optimum cylinder combustion condition.
– Protection grid condition

Gradual vibration:
– Ineffective in service cleaning.
– Gradual fouling
– Slackening of bolts
– Deterioration of resilient mounts for bearings.
– Ineffective PMS.
Remedial action:
– Maintain PMS
– Effective Water/solid wash.
– Regular bearing exchange
– Regular inspection and maintenance of the supports.

Q: State the Methods of operating with defective turbocharger.
Methods of running the engine with defective turbocharger depend upon design consideration and the repair facility.

Answer:

Bypass arrangement:

Some design provides a different path for the exhaust gas to pass to the uptake.
Engines with exhaust by-pass
1. Stop the engine.
2. Lock the turbocharger rotor.
3. Remove the blanking plate from the exhaust by-pass pipe.
4. Remove the compensator between the compressor outlet and the scavenge air duct. This reduces the suction resistance.
5. Run engine with reduced load.

Engines without exhaust by-pass:

This system allows the damaged rotor to be taken out of the engine. This may also allow repair work of the rotor is possible.
1. Stop the engine.
2. Remove the rotor and nozzle ring of the turbocharger.
3. Insert blanking plates.
4. Remove the compensator between the compressor outlet and the scavenge air duct. This reduces the suction resistance.
5. Cooling should be maintained for the turbine casing if possible.
6. Run engine with reduced load.

Engine with locking the rotor:
1. Stop the engine.
2. Lock the rotor of the defective turbocharger.
3. Rather than completely blanking off the compressor an orifice plate is fitted to allow controlled amount of cooling air to pass to prevent overheating of the rotor due to conduction
4. Cooling should be maintained for the turbine casing if possible.
5. LO supply to stop.
6. Run engine with reduced load.

Q. Describe how the following conditions are caused and dealt with
• Gradually decreasing in scavenges air pressure.
• Suddenly increasing in scavenges pressure.
• Scavenge air temperature at consistently above normal.

(a)Scavenging air pressure drops in spite of the normal speed of the turbocharger means that resistance has increased in the passage between air inlet and the scavenge air valves.
• Problem with the turbocharger
• Negative pressure set up inside scavenge trunk.
• Air suction filters fouling.
• Faulty scavenge air non-return valve.
• Charge air cooler fouling.
• Turbocharger deceleration.
• Scavenge fire.
• One of the cylinder units misfiring.
• Fouling exhaust system.
• Scavenge manifold leakage and scavenge drain valve open.
• Engine room pressure is negative due to bad weather.

(b) The scavenge air pressure may be increased suddenly because of the following facts:
• Adverse weather and strong wind.
• Overloading of engine.
• Faulty exhaust booster system.
• Auxiliary blower cut in.
• Just after water washing.

(c) The scavenging air temperature may be rising due to the following conditions:
• Fouling of charge air cooler.
• High engine room ambient temperature.
• Faulty cooling water control bypass system.
• Engine overload.
• Scavenge fire.
• Piston blow-past.

Remedies
So as to avoid these conditions already mentioned above, to carry out the following measures:-
• Charged air cooler is cleaned when the pressure differential exceeds the max limit, by reading the differential pressure at manometer fitted at charged air cooler for airside cleaning.
• Turbocharger blower side air filter is cleaned by checking the pressure different shown at “U” tube manometer attached at Blower side air filter housing.
• Charge air cooler’s seawater is cleaned by checking the cooling S.W inlet and outlet temperature difference.

REFERENCES:
DIESEL ENGINES BY A.J WHARTON
MARINEDIESELS.UK.COM
REEDS MOTOR ENGINEERING KNOWLEDGE
INRODUCTION TO MARINE ENGINEERING BY D A TAYLOR

OIL RECORD BOOK (QUESTIONS & ANSWERS)

By Maklub Al Mostofa

QUESTIONS:

  • How to put entry in ORB?
  • What is action in case of wrong entry?
  • How many people fill up and sign it?
  • What is your action if an entry is missed?
  • What is your action if you make any mistake?

 ANSWER:                               

      • This guidance only includes sections C to I.
      • Operations should be recorded in chronological order as they have been executed on board.
      • Dates should be entered in dd/mm/yyyy format, e.g. 16-MAR-2009.
      • Incineration or landing ashore of oily garbage and used filters should be recorded in the Garbage Record Book only.
      • All Entries are to be made and signed by the officer or officers in charge of the operations concerned and each completed page shall be signed by the master of the ship.
      • Do not leave any full lines empty between successive entries.

     

    • If a wrong entry has been recorded in the Oil Record Book (ORB), it should immediately be struck through with a single line in such a way that the wrong entry is still legible. The wrong entry should be signed and dated, with the new corrected entry following.
    • Tank nomenclature should be recorded as per the format noted within the International Oil Pollution Prevention Certificate (IOPPC).
    • Recording of quantities retained in bilge water holding tanks listed under the IOPPC (section 3.3) is voluntary and not required by the Convention.
    • The recording of general maintenance of items pertaining to the OWS remains voluntary and is not required to be recorded in the ORB.

    SOURCE: MEPC1/CIRC.736.REV.2

    QUESTIONS:

    1. What are the weekly entries to be made in ORB part1?
    2. Difference between code D and code E?
    3. What you will entry in case of oil filtering equipment failure?
    4. How you will entry bunker operation? What is the unit of recording?
    5. What are the additional entries?

    ANSWER:

    • Usage of code C.11: Collection of oil residues (sludge).
    • Item No 11.1 identity of tank(s)
    •  Item No 11.2capacity of tank(s) in m3,
    • Item No 11.3 Total quantity of retention in m3.
    • Item No 11.4 Quantity of residue collected by manual operation in m3.

    (Operator initiated manual collections where oil residue (sludge) is transferred into the oil residue (sludge) holding tank(s).)

    Example #1
    Weekly inventory of oil residues (sludge) tanks (tank listed in the Supplement to the IOPPC)

    Example #2 :
    Recording of oil residue (sludge) collected by manual operation in oil residue (sludge) tank- Note: Operator initiated manual collection where oil residue (sludge) is transferred (transfer with a pump) into the oil residue (sludge) tank(s). Examples of such operations could be:

    1. Collection of oil residue (sludge) from fuel oil separator drain tanks.
    2. Collection of oil residue (sludge) by draining engine sump tanks.
    3. Adding fuel oil to an oil residue (sludge) tank (all content of a sludge tank is considered sludge).
    4. Collection of sludge from bilge water holding tanks – in this case a disposal entry for bilge water is also needed.

    Usage of code C.12: Disposal or Transfer of oil residues (sludge)

    • Item No 12.1 to reception facilities (identify port)
    • Item No 12.2 to another (other) tank(s) (indicate tank(s) and the total content of tank(s));
    • Item No 12.3 incinerated (indicates total time of operation with time of start and stop);
    • Item No 12.4 other method (state which).

    Example #3:
    Disposal of oil residue (sludge) via shore connection
    Note: Ships’ masters should obtain from the operator of the reception facilities, which includes barges and tank trucks, a receipt or certificate detailing the quantity of oil residue (sludge) transferred, together with the time and date of the transfer. This receipt or certificate, if attached to the Oil Record Book Part I, may aid the master of the ship in proving that his ship was not involved in an alleged pollution incident. The receipt or certificate should be kept together with the Oil Record Book Part I.

    Example #4:
    Draining of water (disposal) from an oil residue (sludge) tank listed under item 3.1 in the Supplement to the IOPPC, to a bilge water holding tank listed under item 3.3 in the Supplement to the IOPPC :

    Note: Collection of bilge water need not to be accounted for, so only one entry is required. Capacity of sludge tanks should not be recorded for C.12.x entries.

    Example #5:
    Transfer from one oil residue (sludge) tank to another oil residue (sludge) tank, both listed under item 3.1 in the Supplement to the IOPPC

    Example #6:
    Incineration of oil residue (sludge) in Incinerator

    Example #7:
    Burning of oil residue (sludge) in Boiler

    Example #8:
    Evaporation of water (disposal) from an oil residue (sludge) tank listed under items 3.1 in the Supplement to the IOPPC

    Example #9:
    Regeneration of fuel oil from oil residue (sludge)

    Usage of code D: Non-automatic starting of discharge overboard, transfer or disposal otherwise of bilge water which has accumulated in machinery spaces.

    • Item No 13. Quantity discharged, transferred or disposed of, in m3
    • Item No 14. Time of discharge, transfer or disposal (start and stop).
    • Item No 15. Method of discharge, transfer, or disposal:
    1. Through 15 ppm equipment (state position at start and end);
    2. To reception facilities (identify port);
    3. to slop tank or holding tank or other tank(s) (indicate tank(s); state quantity retained in tank(s), in m3

    Example #10:
    Pumping of bilge water from engine-room bilge wells to a tank listed under item 3.3 in the Supplement to the IOPPC

    Example #11:
    Transfer of bilge water between tanks listed in item 3.3 in the Supplement to the IOPPC

    Example #12:
    Pumping of bilge water overboard from tank listed in item 3.3 in the Supplement to the IOPPC

    Example #13:
    Disposal of bilge water from tank listed in item 3.3 in the Supplement to the IOPPC to oil residue (sludge) tank listed in item 3.1 in the Supplement to the IOPPC

    Usage of code E: Automatic starting of discharge overboard, transfer or disposal otherwise of bilge water which has accumulated in machinery spaces.

    • Item No 16. Time and position of ship at which the system has been put into automatic mode of operation for discharge overboard, through 15 ppm equipment.
    • Item No 17 .Time when the system has been put into automatic mode of operation for transfer of bilge water to holding tank (identify tank).
    • Item No 18 .Time when the system has been put into manual operation

    Example #14:
    Pumping of bilge water overboard via 15 ppm equipment from tank listed in item 3.3 in the Supplement to the IOPPC or from engine-room bilge wells

    Example #15:
    Transfer of bilge water from engine-room bilge wells to a tank listed under item 3.3 in the Supplement to the IOPPC

    Usage of code F: Condition of oil filtering equipment.

    • Item No 19.Time of system failure.
    • Item No 20. Time when system has been made operational.
    • Item No 21. Reasons for failure.

    Example #16:
    Failure of Oily Filtering Equipment, Oil Content Meter or stopping device –

    Note: The condition of the oil filtering equipment also covers the alarm and automatic stopping devices, if applicable.

    A code ‘I’ entry should also be made indicating that the overboard valve was sealed shut due to non working Oil Filtering Equipment or Oil Content Meter. On the date where the system is functional again, a new entry, using code F 19 / 20 / 21 should be made where F 19 is the date and time of the initial failure and F 20 is the time the system is functional again.

    • When proper operation of the Oily Filtering Equipment, Oil Content Meter or stopping device is restored -.

    Note: The condition of the oil filtering equipment also covers the alarm and automatic stopping devices, if applicable. A code ‘I’ entry should also be made indicating that the overboard valve was unsealed since the operation of the Oil Filtering Equipment or Oil Content Meter has been restored.

    Usage of code G: Accidental or other exceptional discharges of oil.

    • Item No 22. Time of occurrence.
    • Item No 23. Place or position of ship at time of occurrence.
    • Item No 24. Approximate quantity and type of oil.
    • Item No 25. Circumstances of discharge or escape, the reasons there for and general remarks.

    Example #16:
    Accidental Pollution-
    Note: If failure of Oil Filtering Equipment or Oil Content Meter related equipment is involved, appropriate (F) entry is to be made in ORB. Relevant sections of the SOPEP (SMPEP) are to be used to combat oil spills at sea. Examples of Circumstances of discharge include, but are not limited to:
    1. Oil Content Meter failure.
    2. Fuel tank overflow.
    3. Ruptured bunkering hose/flange.
    4. Fuel tank leakage (due to collision or grounding).

    Usage of code H: Bunkering of fuel or bulk lubricating oil.

    • Item No 26.1.Place of bunkering.
    • Item No 26.2 Time of bunkering.
    • Item No 26.3. Type and quantity of fuel oil and identity of tank(s) (state quantity added, in tons, and total content of tank(s)). .
    • Item No 26.4 Type and quantity of lubricating oil and identity of tank(s) (state quantity added, in tons, and total content of tank(s)).

     Example #17:
    Bunkering of Fuel oil

    Example #18:
    Bunkering of Bulk Lubricating oil Note: Separate entries required for each grade of fuel oils and lubricating oils respectively to ensure transparency. This entry is not required if lubricating oils are delivered onboard in packaged form (55 gallon drum, etc.).

    Usage of code I: Additional operational procedures and general remarks.
    Example #20:
    Pumping oily bilge water from a Cargo Hold bilge holding tank to a tank listed under item 3.3 in the Supplement to the IOPPC
    Note: Any collection and transfer of oily bilge water into the engine-room bilge holding tank(s) from a cargo hold bilge holding tank(s) should be recorded using code (I) Tankers with slop tanks

    Example #21:
    Entry pertaining to an earlier missed operational entry Note: Date (1) to be the date of the original operation. Date (2) to be the current date i.e. the date the entry is made. Signed (1) Signature of Officer making I entry Signed (2) Signature of Officer making missed entry

    Example #22:
    De-bunkering of Fuel oil Note: Include receipt & certificate from receiver for amount & type of fuel oil de-bunkered.

    Tankers with slop tanks

    Example #23:
    Transfer of sludge from engine-room oil residue (sludge) tank to deck/cargo slop tank

    Example #24:
    Transfer of bilge water from tank listed in item 3.3 in the Supplement to the IOPPC to deck/cargo slop tank. Note: Requires this method listed in the IOPP Supplement under item 3.2.3. If non-oil-cargo related oily residues are transferred to slop tanks of oil tankers, the discharge of such residues should be in compliance with Regulation 34. (UI 22.1.1 for Regulation 15). Requires an entry in the Oil Record Book – Part II using code (J). If sludge or bilge water is transferred from multiple tanks in engine-room a separate entry must be made in ORB Parts I & II for each transfer.

    General Guidance – Additional Voluntary Recordings

    Example #25:
    Voluntary declaration of quantities retained in bilge water holding tanks ref. MEPC.1/Circ.640 – record weekly

    Example #26:
    Optional sealing of MARPOL Annex I related valve and/or equipment

    Example #27:
    Breaking of optional seal on MARPOL Annex I related valve and/or equipment

    (Source: MEPC1/CIRC.736.REV.2)

     

    Summary Oil Record Book (Part 1) Entries:

      • Ballasting or Cleaning of fuel oil tanks
      • Discharge of dirty ballast or cleaning water from fuel oil tanks
      • Collection , Transfer and disposal of oil residues
      • Non automatic starting of discharge overboard, transfer or disposal otherwise of bilge water accumulated in machinery spaces
      • Automatic starting of discharge overboard, transfer or disposal otherwise of bilge water accumulated in machinery spaces
      • Condition of the oil filtering equipment
      • Accidental or other exceptional discharges of oil
      • Bunkering of fuel or bulk lubricating oil
      • Additional operational procedures and general remarks

    To get the clear information, please follow the below link:

    • https://www.ukpandi.com/fileadmin/uploads/uk-pi/LP%20Documents/Tech_Bulletins/Tch%20Bulletin.35(amd).pdf
    • https://www.uscg.mil/hq/cgcvc/cvc/marpol/sdoc/MEPC_1_Circ_736_rev_2.pdf

LNG SHIPS

By F. R. Chowdhury

images
Image Credit: Liquefied Gas Carrier.com

Properties of LNG:

LNG is actually METHANE. Purity of cargoes ranges from 67% to 99.5%, according to geographical location. Impurities consist mainly of Ethane and Propane. LNG is:
Non – toxic
Non – corrosive
Colourless
Odourless
In its gaseous form it is lighter than air. Its ratio of volume as liquid to gas is 1:600.

Lower flammable limit is approx. 4% in air. Upper flammable limit is approx. 14% in air. There is no LEL or UEL as such because there is no explosive effect upon ignition at any concentration. Auto ignition temperature is approx. 585° C and there is therefore little chance of ignition from engine or boiler exhausts. Methane has a slow travelling flame front and can be effectively extinguished with dry powder. Ship superstructure or other vulnerable areas may be protected by water spray, which imparts heat to the vapour cloud, resulting in immediate upward evaporation. CO2 injection firefighting systems are not fitted due to the possibility of ignition by static electricity being generated.

Because it is odourless and colourless it presents additional dangers to ships crew who may be unaware of system leaks. An odour is given to the gas prior to domestic distribution to enable detection by smell. This process is known as “stenching”.

Containment Systems / Ship Types:

There are basically two types of tank construction in current use. They are the MOSS ROSENBURG and MEMBRANE systems. In both cases the containment system is designed to serve two purposes:

• To contain LNG cargo at cryogenic temperature (-160 degree C);
• To insulate the cargo from hull structure.

The MOSS – ROSENBURG system comprises usually of four aluminium alloy spherical tanks, the upper half of which protrude above the main deck. The tanks are connected to ship’s structure by a skirt extending downwards from the equator of the tank into the hold space. Insulation is applied around the spherical tank and is backed by aluminium foil, which forms a spray shield in case of leakage. Accumulated leakages may be collected in a simple drip tray arrangement below the tank, designed to protect the structure below from excessive cooling. Minor leakage would flash off rather than form any significant pool. Tank thickness ranges from 30 – 50mm top to bottom but with a thickness of about 120mm at the equatorial ring. These tanks suffer relatively few structural problems. However MOSS ships require significant reinforcement of structure at sheer strakes and utilise a trunk deck construction at either side. In fact the hull construction is remarkably similar to a container ship in this regard, but with massive stiffening at the trunk deck. Severe rolling of the vessel is not unusual, especially in ballast condition. Numerous ballast tanks are fitted. A MOSS hull results in a higher GT compared to Membrane type ships. e.g. 120,000 compared to 92,000 GT.

MEMBRANE tanks vary in design according to manufacturer but all designs follow similar basic principles of construction. There is a primary barrier made of “Invar” or stainless steel, which forms the cargo tank surface. This is 0.7 or 1.2 mm thick, depending on design, and is backed by insulation blocks of approx. 250mm thickness. A secondary barrier sits behind this, made of Invar or Triplex (Aluminium / Glass fibre cloth composite), again depending on design. The secondary barrier is backed by more insulation, which directly sits against the ship’s hull structure.

The tank lining thus consists of two identical layers of membrane and insulation, so that in the event of any leak in the primary barrier, the cargo is contained by the secondary barrier. The secondary barrier is only designed to contain any envisaged leakage of cargo for a maximum period of 15 days (IGC Chapter IV/ 4.7.4). This system ensures that all the hydrostatic loads of the cargo are transmitted through the membranes and insulation to the inner hull plating of the ship.

MEMBRANE ships are prone to sloshing damage at certain loaded conditions. As a result, insulation boxes and adjacent cofferdam structures have been reinforced on ships built 2003 onwards. Loading was previously prohibited between 10% of tank length (expressed as a height of the tank) and 80% tank height. Later ships are now restricted loading between 10%L and 70%. This small improvement allows all four tanks to comply with restrictions on loading height by simple transfer of cargo for any tank condition.

A large amount of high tensile steel is used in construction of LNG ships. The current ceiling on ship capacity (approx. 140,000 cu.m) is the result of Japan, the major gas importer to date, imposing a 105,000 dwt limit on ships entering its ports. With expanding markets, ships up to 216,000 cu.m are planned.

Ship operations:

Where a tanker has been designed specifically to carry fully refrigerated Ethylene (boiling point at atmospheric pressure of -104 degree C) or LNG (atmospheric boiling point -162 degree C) nickel-alloyed steel, stainless steel (such as Invar) or aluminum must be used as tank construction material.

LNG is loaded at a temperature of –162° C and at atmospheric pressure. Tank pressures are maintained at slight positive pressure but below 230 mbar (Cargo tank relief valve setting). A small percentage of the cargo boils off over the voyage (can be as low as 0.15% of the cargo per day) and this is normally burnt in the ship’s boilers, generating steam for use in the steam turbine propulsion plant. Because of the boil-off occurring, Administrations may allow filling up to 99.5% of tank volume instead of the 98% stipulated maximum. This is not normally a problem for “Moss” ships due to their spherical tank construction and highly accurate measurement due to the shape of the tank. “Membrane” ships with their flat topped cargo tanks may not be so accurately measured for certain ship conditions of list and trim.

All ships are fitted with a Nitrogen generator for inerting pipes, void spaces and membrane spaces as necessary. (Safety note: Asphyxiation by nitrogen is swift, due to there being no CO2 present in the lungs. There is no stimulus to breathe and you simply drop dead). In the case of membrane ships, a traditional inert gas generator is not required due to the nature of operations and construction. Moss ships require an inert gas generator to flood the hold spaces surrounding the spherical tanks in case of gas detection only. Otherwise these spaces may be filled with dry air.
Relief valves are fitted not only to cargo tanks and membrane spaces, but also to all liquid lines between isolating valves. Consequently, surveyors might require a sample test only of relief valve operation.

Cargo discharge is by submerged electric motor driven centrifugal pump, two per tank each rated at 1700 cu.m/hr.

Cargo boil-off is initially controlled by the thickness of insulation that is fitted to the tank. The required thickness is affected by the calculated amount of boil off required for propulsion. The ship is usually employed on the same route for life and so the boil off may be determined by the owner/charterer as a trade off between anticipated price of LNG and fuel oil and also earning capacity of the ship by comparing % boil-off to cargo delivered. (Less insulation means more cargo capacity but also more cargo lost by boil-off). The Charterer will daily instruct the ship to burn LNG or fuel oil, depending on current or anticipated market prices. Ultimately, minimum insulation thickness is determined by IGC Code requirements, which are designed to protect the ship’s structure from excessively low temperatures. Ships are fitted with regasification plant to generate more gas for propulsion, in the event of boil-off being insufficient.

Boil-off cannot simply be vented in case of overpressure. IGC Code requires that this ozone depleting substance be dealt with at all times. In case of boil-off being in excess of propulsion requirements, the usual method is to simply generate and dump steam to the condenser. Dual fuel diesel engine technology has arrived and it is likely to become more popular. It is also now economically feasible to reliquify the gas on board and return it to the cargo tanks. This raises questions on dealing with excess boil-off in case of non-propulsion or reliquifaction plant breakdown. (At a cost of $10,000,000 it is likely that only one will be fitted per ship). An answer has been offered by industry in the form of an LNG burner that simply burns the gas to atmosphere. They are known by several fancy names, principally to disguise the fact of their wasteful purpose. A design for a 210,000 cu.m ship has a 6m diameter flue!

A question over allowable maximum tank filling also arises due to possibility of no boil-off. (Value of LNG cargoes is rising rapidly and may outstrip fuel oil prices – LNG might not be used for propulsion). The possibility of returning liquefied gas to an already full tank should also be considered.

LNG overflowing from a mast riser can easily crack deck plating. Although it can be demonstrated that LNG spilt onto steel plate will not cause cracking, actual cases have shown that deck plating can and will crack due to inherent stresses generated by fabrication of the hull and/or ship in loaded or ballast condition. In the case shown on the LNG course, multiple cracks propagated completely through under-deck stiffeners.

Statutory considerations:

LNG ships are often built to USCG rules (CFR) in addition to IMO/IGC Code requirements in order to trade to US. All ships have instrumentation in excess of statutory requirements and failure of one instrument will not usually render the ship non-compliant.

LNG ships are traditionally drydocked at 30 month intervals, at which time instrumentation is overhauled by requirement of the shore terminals. Instrumentation includes the Custody Transfer System (CTS); a computerised monitoring system, which enables monitoring of the ship condition by the shore facility, with Emergency Shut Down of ship cargo operations being possible from ashore also. CTS are not a statutory or class requirement.

With markets changing, it is anticipated that owners operating particularly in the spot market may object to taking their ships out of service when an in-water survey might possibly suffice. It is therefore expected that pressure to have in-water surveys carried out at intermediate surveys will be forthcoming. Currently Class intermediate surveys are required to be carried out while the ship is gas-free and ships are usually in drydock as a consequence of shore terminals requirements stated above.

The expected expansion in the LNG fleet will require 5000 additional crew with relevant STCW endorsements. Also of concern is the emergence of new technology. Gas turbines are expected to become increasingly used in LPG ships and the question was asked, “What will Flag States require by way of training” for new technology such as this?

LNG ships are known to be positioning themselves to take advantage of possible spot cargoes, and switching off AIS to maintain their commercial advantage.

Prior to delivery, LNG ships have functional gas trials carried out with a usually small partial load in order to prove satisfactory operation of cargo systems and instrumentation.

Upon delivery, newly built LNG ships have three IGC Code items outstanding:

• Initial loading
• Initial discharge
• Cold spot inspection

One IACS Society has stated that these three items may be considered to be completed during gas trials. Other member societies disagree with this view and an IACS UI (unified interpretation) is under consideration. Some ships carry out gas trials fully loaded but it is important that the cold spot inspection is not carried out before the thermal inertia of the insulation has been overcome.

Some gas leakage into the space behind the primary membrane is allowable. The alarm level to be set at 30% LFL or up to 30% by volume, (well above the flammable range) depending upon the type of containment system fitted. The wide range of allowable limits is principally because early containment systems leaked anyway! Leakages into the space are normally purged with nitrogen and are not perceived to be a real danger to the ship.

The first Gas Code for existing ships was retrospectively written and applies to ships pre 1975. The next Gas Code applies to ships 75-85 and the current IGC Code applies to ships ‘86 onwards.

Ship systems and design are rapidly changing and the current IGC Code is out of touch with developments in some areas. Consequently LR is adopting a risk-based approach for some new designs and have already applied risk based analysis to gas turbine and dual fuel technology in the absence of existing regulations.

Future developments:

Future developments include “Gas to Liquid” conversion of LNG to pure diesel oil, naptha etc. This is a chemical process.

Shipping developments include proposed Compressed Natural Gas Ships (Cargo 70-80 bar pressure), Compressed LPG Ships (cargo at up to 250 bar pressure) and “Gas to wire” offshore generating stations, which may be classed and registered in the same way as FPSO vessels currently are.

LNG Course:

Operation of Liquefied Gas Carriers involves potential hazards. Training in emergency procedures and use of special emergency equipment must be given to crew. The technical complexity of design, construction, operation and maintenance require good training. The training must help in understanding of LNG ship technology and ship operations including considerations for loading in excess of 98%.

STCW training & endorsement:

Regulation V/1-2 states: Officers and ratings assigned specific duties and responsibilities related to cargo or cargo equipment on liquefied gas tankers shall hold a “Certificate in Basic Training for liquefied gas tanker cargo operations”.

This basic certificate may be obtained either by completing at least three months service on a liquefied gas tanker followed by successful assessment of competence meeting the requirements of Code A-V/1-2 paragraph 1. Or by having successfully completed an approved course of training meeting the same requirements (A-V/1-2, paragraph 1).

Management level officers and any person with immediate responsibility for loading, discharging, care in transit, handling of cargo, tank cleaning or other cargo related operations on liquefied gas tankers shall successfully complete an approved advance training for liquefied gas tanker cargo operations and complete a minimum period of three months service on a liquefied gas tanker in a supervised capacity (other than management level).

Administration shall issue Certificate of Proficiency to those who meet the requirements for certification under both categories.

[Please note this article does not meet any training requirement. This article merely presents an outline/ introduction of LNG ships for basic knowledge.]