Boiler Water Treatment

By Maklub Al Mostofa

Scale formation and corrosion are the main two factors that determine the efficiency of the internal parts and as well as lifetime of the boiler. Badly corroded and scaled boiler can fail within very short time.

SCALE FORMATION IN BOILER

Depending upon the sources boiler water contains various types of salts and impurities. Under operating conditions all the salts comes out of the water. These salts cause formation of scale inside the boiler. The more the water contains solids and salts the more the boiler is prone to scale formation. Read more

Scavenging and Turbocharging (Questions & Answers)

By Maklub Al Mostofa

Q. What is scavenging? Name the types of scavenge used for large two stroke engine. Describe the advantage of Uniflow scavenging.

SCAVENGING:
It is the removal of residual exhaust gas and its replenishment with fresh air in an internal combustion of the engine. The fresh air intake and exhaust gas expel operation are not simultaneous fully but some degrees of overlap period are provided for better efficiency.
There are 3 types of scavenging process.
1. Loop scavenging
2. Cross scavenging
3. Uniflow scavenging

Loop scavenging:
In this type of scavenging air passes over the piston crown and rises to form a loop. Ports are cut in the cylinder liner wall for this operation. The scavenge ports and exhaust ports are in the same side of the liner. Read more

Oil Record Book (Questions & Answers)

By Maklub Al Mostofa

QUESTIONS:

  • How to put entry in ORB?
  • What is action in case of wrong entry?
  • How many people fill up and sign it?
  • What is your action if an entry is missed?
  • What is your action if you make any mistake?

 ANSWER:                               

    • This guidance only includes sections C to I.
    • Operations should be recorded in chronological order as they have been executed on board.
    • Dates should be entered in dd/mm/yyyy format, e.g. 16-MAR-2009.
    • Incineration or landing ashore of oily garbage and used filters should be recorded in the Garbage Record Book only.
    • All Entries are to be made and signed by the officer or officers in charge of the operations concerned and each completed page shall be signed by the master of the ship.
    • Do not leave any full lines empty between successive entries.
    • Read more

Enclosed Space Entry

By Maklub Al Mostofa

Enclosed Space:

For the purpose of this Guide, an ‘Enclosed Space’ is defined as a space that has the following characteristics:

  • Limited openings for entry and exit.
  • Unfavourable natural ventilation.
  • Not designed for continuous worker occupancy

Enclosed spaces include, but are not limited to:

    • Cargo spaces
    • Double bottoms
    • Fuel tanks
    • Ballast tanks
    • Cargo pump-rooms
    • Cargo compressor rooms
    • Cofferdams
    • Chain lockers
    • Void spaces
    • Duct keels
    • Inter-barrier spaces
    • Boilers
    • Engine crankcases
    • Engine scavenge air receivers
    • Sewage tanks
    • Read more

PORT STATE CONTROL (PSC)

F R Chowdhury


Image Credit: ClassNK

1. What is PSC:
It is customary to respect law of the land. You will appreciate that I will have to comply with laws of Malaysia so long I am in Malaysia no matter what my nationality is. The principle of Port State Control is based on this simple philosophy. A ship that enters my waters will have to comply with my legal requirements and standards. You might wonder as to how many countries’ laws the ship has to comply with? Fortunately the national laws are based on requirements of common international conventions. This means to say that the requirements relating to safety, security and protection of marine environment are derived from common international conventions and as such are similar to each other’s. Read more

CoC Oral Exam Questions Bank

By Maklub Al Mostofa

Maritime Regulations and Survey

    1. Describe Safety construction survey and items to be surveyed.
    2. Describe Load line survey. Purpose of load line survey. Why do we need load line certificate?
    3. Describe LOAD Line convention.
    4. Why load line mark is at the mid ship/ how to calculate load line for a ship?(details)
    5. Details about Safety equipment survey
    6. How many certificates to be carried on board?
    7. Describe Life boat regulation?
    8. Describe MLC 2006 details
    9. Describe Ballast water regulation.
    10. Describe SOLAS chapters and new amendment
    11. Describe MARPOL ,ALL THE ANNEX OF MARPOL,
    12. All the chapters of annex vi, details of NOx , SOx limit, tyre ,EEOI ,EEDI, SEEMP…….
    13. What is HSSC?
    14. ESP(Enhanced survey program)
    15. Regulation for vent pipe, sounding pipe
    16. Preparation for PSC inspection as C/E?

Read more

LNG Ships

By F. R. Chowdhury

images
Image Credit: Liquefied Gas Carrier.com

Properties of LNG:

LNG is actually METHANE. Purity of cargoes ranges from 67% to 99.5%, according to geographical location. Impurities consist mainly of Ethane and Propane. LNG is:
Non – toxic
Non – corrosive
Colourless
Odourless
In its gaseous form it is lighter than air. Its ratio of volume as liquid to gas is 1:600.

Lower flammable limit is approx. 4% in air. Upper flammable limit is approx. 14% in air. There is no LEL or UEL as such because there is no explosive effect upon ignition at any concentration. Auto ignition temperature is approx. 585° C and there is therefore little chance of ignition from engine or boiler exhausts. Methane has a slow travelling flame front and can be effectively extinguished with dry powder. Ship superstructure or other vulnerable areas may be protected by water spray, which imparts heat to the vapour cloud, resulting in immediate upward evaporation. CO2 injection firefighting systems are not fitted due to the possibility of ignition by static electricity being generated. Read more

The Origin of Shipping & Insurance

By F. R. Chowdhury

Shipping is one of the oldest businesses in the world. Risk management and insurance is also equally old business. They are closely linked with one another. In fact the development of insurance took place in support of the shipping industry.

In the early days the ship-owner, trader and ship-captain was a single entity. A rich influential person got a ship built, procured some commodity that is readily available in his area and then sailed to another place for business. He would normally barter the goods in exchange of commodity available in the new land. Gradually gold and then coins and currency became medium of exchange. Fortune favours the brave. The pioneer in shipping gradually became a rich man. He was not anymore ready to undergo all the rolling and pitching at sea. He employed a trusted man as the captain of his ship. He still remained owner of the ship and the cargo. However, those days with no radio telecommunication there was no way for him to know anything until the ship was sighted on the horizon again. Some time the ship was never seen again – either lost at sea or hijacked by pirates.
Read more

Survey, Audit & Certification for Ships

Compiled by F. R. Chowdhury

images Image Credit: ClassNK

1. Certificate of Survey:

– This is done on behalf of the Flag State prior to the registration of the vessel to establish the authenticity/ identity of the vessel and to ensure that particulars given/ obtained are correct.

2. Certificate of Registry: 

– This is the identity document of the ship. Issued by the Flag State Administration. It will contain the name of the ship, name and address of the Owners/ Bare-boat charterers, LR-FP Identity Number, Port of registry, dimensions and tonnage, IMO number, Call Sign and the Nine-digit Maritime Mobile Service Identity (MMSI), name of builder and year of build, type/class of ship, features like number of decks, bulkheads, masts, propellers and brief details of machinery and power. In some countries it may be necessary to record the name of the Chief Executive or other responsible person in the company who is to be contacted in an emergency. (The UN Convention on Registration of Ships 1986 (not yet in force) and UNCLOS-82 provide general guidance on this subject.)
Read more

Process flow and Energy Efficiency Adoption on Ships

12

From the life cycle of a ship from procurement to demolition, we can summarize the main focus areas into 3 distinct areas namely: procurement, ship operations & management and demolition. In this 3 distinct areas the various stakeholders are involved in various processes of a ship specially in procurement and ship operation & management areas which are pointed in figure 1.
Read more

Wärtsilä EnergoProFin Propeller

146
Image Credit: Wärtsilä

The efficiency of the ship’s propeller is an important part of a ship’s overall propulsion efficiency. The Wärtsilä EnergoProFin has become a popular retrofit solution to improve the propulsion efficiency and hence improve the fuel efficiency of many ships already in service.The Wärtsilä EnergoProFin solution, a propeller cap with fins that rotates together with the propeller to produce fuel savings of up to 5%.
Read more

Ignition Quality Parameters of Slow Speed Diesel Engine

Ignition quality parameters:

  1. Energy
  2. Viscosity
  3. Maximum firing pressure.
    4. Injection delay
    5. Ignition delay .

1. Energy comparison

• The injection pump is a volumetric pump
• The higher the density the more energy it contains per volume unit
• The density difference between HFO and MDO is larger than the difference in net calorific value

2.  Viscosity comparison

  • The viscosity of MDO is lower than the viscosity of HFO (even HFO is heated)
    • Lower viscosity fuels result in more internal leakage in the injection pump from the high pressure side to low pressure side.
    • Internal leakage has to be compensated by giving more fuel rack

Read more

Guidance to Deck Officers While Loading Grain

Author: Capt. Kamal Ahmed.

 

I was once hired by my client to get the approval for loading by the Port Warden in the 2nd loading port as the actual healing moment was more than the permissible healing moment. The situation was as follows:

  1. The original stow plan which was sent to the shipper by the charterer for loading Port A+ Port B was total for 65,700.00 M/T.
  2. Cargo for loading as per shippers request in the beginning was:
  • Lot 1 –  minimum /maximum 27 000 M/T for  discharge port A
  • Lot 2: Minimum 30000 M/T for discharge Port B , Minimum 6600 M/T   for discharge port C,
  • Total of 63600 M/T
  1. In the stowage plan which the Master had sent for loading was “64,453.202” M/T. The Master mixed Lot 1 & Lot 2 in hold no 7, which cannot be done as lots have to be separated naturally, and not separated artificially. The Master’s explanation was that the change of the stow is done in order to satisfy the stability requirements as per the port warden at the 1st load port. The vessel was not satisfying the shipper’s requirements for natural separations of Lot 1 and Lot 2.

Read more

Planning & Preparation of Dry Dock as a Chief Engineer

Image Credit:  www.rbrodarstvo.com

Preparations:

Dry docking survey is to be done every 2 ½ years interval , 2 times in 5 each year cycle , called annual docking and special docking survey. Special survey is carried out every 5 years interval.

As a Chief Engineer of a vessel , he must study the time of  dry docking due , verify annual or special , and  prepare documents & defect list to be repaired , at least 3 months priority for easy and efficient supports from ship company.

Preparation of Documents:

    • The necessary plans , drawings , instruction manuals , service records of previous docking to be collected and kept ready . Copy of plans and drawing to be sent to dockyard on request.
    • List and intend the followings to be supplied in time
    • Needful machinery spares repair materials for ship staff’s job
    • Paints
    • Collect and keep ready for special tools and devices
    • Issued needful instructions for safety , fire precaution and pollution prevention.
    • Issue assignments for the work to be done before entering dry dock and to be undertaken by E/R staffs under 2nd Engineer supervision.

    Read more

    CoC Oral Exam Preparation (Part – 20): OWS & Regulations

    MARPOL Regulations of Discharging Machinery Bilge into the sea:

    The rules and Regulations that govern the operation of an Oily Water Separator are under MARPOL  Annex I: “Prevention of pollution by oil”.

    Regulation 14: Oil Filtering Equipment

    1. Vessels above 400 GT and less than 1000 GT shall have an oil filtering equipment
    • Approved by the Administration
    • Will ensure that any oily mixture discharged into the sea after passing through the equipment has an oil content not exceeding 15 ppm

    2.  Vessels above 1000 GT shall have an oil filtering equipment

      • In addition to the above, shall be provided with alarm arrangements to indicate when the level cannot be maintained.
      • Also arrangements to ensure that any discharge of oily mixture is automatically stopped when the oil content of the effluent exceeds 15 ppm

    Read more

    CoC Oral Exam Preparation (Part – 19): Engine Room Watch Keeping

    Watch Keeping in Engine Room:

    pic05_up
    Image Credit: www.jamstec.go.jp

    A. Handing over a watch:

    Engineers on ships perform their duties in rotational shifts, each having fixed and equal number of hours. This work shift, also known as a watch, needs to be carried out in an efficient manner to ensure the safety of life and property at sea. The normal watch keeping schedule and responsible watch keeping engineers in a fully manned engine room:
    0800-1200——4/E,  2000-2400—-4/E
    1200-1600——3/E,  2400-0400—-3/E
    1600-2000——2/E,  0400-0800—-2/E

    1. A watch keeping engineer should take extra care while handing over the watch to the incoming watch keeping engineer to make sure that the ship runs safely and smoothly.
    2. It is  necessary that the right information is passed to the incoming engineer by the engineer on watch so that he can concentrate on his watch and perform more demanding and important jobs.
    3. Handing over of the watch should be carried out according to the instructions provided by the chief engineer’s standing orders and company’s instructional manual. It should be done very sincerely and honestly so that the watch keeping becomes smoother and continuation of any kind of work is not affected on the ship.
    4. The following things need to be informed to the reliving officer:
    5. Special orders related to any ship operation from bridge or the company
    6. Standing orders from the chief engineer
    7. Special mode of navigational operation of ship in case of emergency situation, damage, icy, or shallow water etc
    8. In case there is any kind of maintenance work being carried out in the engine room by other engineers and crew members then their work location, details of machinery under maintenance, and information of authorized person and crew members should be provided.

    Read more

    CoC Oral Exam Preparation (Part – 18): Electrical Miscellaneous

    16

    Servicing a motor effected/washed by seawater:

    1. Cut out power supply by circuit breaker & taking out fuse. Mark & disconnect supply wire. Took Megger reading & recorded.
    2. Take out the motor, open up & dismantle. (Make sure marking on both cover & body)
    3. Clean and wash with warm fresh water.( About 180′ F)
    4. Cover by canvas, dry with positive ventilation & 500 watt lamp
    5. Clean with Electro cleaner.
    6. Baking by 500 Watt lamp for few hours.
    7. Take Megger reading. (test stable or constant reading) Apply insulation varnish to the winding while warm.
    8. Baking & taking the Megger.
    9. Reassemble & put back into service.
    10. When test run check sound, ampere & temperature.

    Read more

    Shipboard Preparation for Ice in Winter Season

    New Bitmap Image

    Image Credit & Author: Captain Kamal Ahmed.

    Preparation

    Prior making a voyage into subfreezing zone, Master must ensure that the vessel is suitable for navigating in that zone, crew are duly trained, well protected with PPE and necessary gears and familiar with the operations of the vessel in ice conditions. Master also need to prepare his or her vessel to encounter severe winter condition to prevent damages to the vessel and or its machinery prior entry in areas in freezing condition.
    Read more

    CoC Oral Exam Preparation (Part – 17): Boiler Safety Valve

    Boiler Safety Valves protect the boiler from over pressurisation. As per the requirements, at least two safety valves should be fitted to the boiler and both are mounted on a common manifold with a single connection to the boiler. Boiler with super heater, normally three safety valves are fitted; two to the boiler drum and one to the superheater. The superheater must be set to lift first to ensure a flow of steam through the superheater.

    Improved High Lift Boiler Safety Valve:

    1245

    Fig: Improved Highlift Boiler Safety Valve

    The sketch shown is improve high lift safety valve . The are usually mounted 2 Nos. on a single chest. Valve , seat , spindle , compression screw and bush are made of non-corroded metal and valve chest is made of cast steel.
    This valve improve than other type as because:

    • Using wingless valve to improve steam flow
    • Floating cylinder arrangement can prevent piston seizure.

    Read more

    High Pressure Water Mist (Hyper Mist) System

    • Mandatory in passenger ships with GT > 500 and cargo ships with GT >2000, for fire extinguishing in machinery spaces of category A with volume > 500 m3 (IMO MSC/Circ.913).
    • System introduced as an alternative to the Halon systems (prohibited in 1994) for fire fighting in machinery spaces of category A and cargo pump rooms. This fire extinguishing process is based in 3 mechanisms:
      –  Cooling of the flames
      –  Reduction of the oxygen content by the displacement of the air by the expansion
      of the water vapor
      –  Diminution of the radiating heat
    • The pressurized water in contact with the fire vaporizes and it is converted into steam. This process absorbs much energy lowering the temperature of the fire and the pressurized water expands about 1700 times taking the air away from the fire. These systems require a water consumption 6 to 10 times lower than a traditional sprinkler system
    • It shall be activated automatically by 2 different types of detectors:
      flame and smoke.

    Read more

    CoC Oral Exam Preparation (Part – 16): CO2 Flooding System

     Requirements of CO2 Room:

    In CO2 flooding system, carbon dioxide bottles are placed in a separate room. The requirements for location, accessibility, use and ventilation of CO2 storage spaces as per IMO are:

    • Spaces for storage of cylinders or tanks for extinguishing gas should not be used for other purposes.
    • These spaces should not be located in front of the forward collision bulkhead.
    • Access to these spaces should be possible from the open deck.
    • Spaces situated below the deck should be directly accessible by a stairway or ladder from the open deck.
    • The space should be located no more than one deck below the open deck.
    • Spaces where entrance from the open deck is not provided or which are located below deck are to be fitted with mechanical ventilation.
    • The exhaust duct (suction) should be lead to the bottom of the space.
    • Such spaces should be ventilated with at least 6 air changes per hour.

    Read more

    CoC Oral Exam Preparation: (Part – 15): Fire & Safety

    Fire Hose:

    1. At least one fire hose for each of the hydrants and hose shall be used only for extinguishing fires and testing purposes. (Passenger Ship)
    2. One for each 30m length of ship and one spare, but not less than 5 in all. (Cargo Ship = or > 1000GT) and ship carrying dangerous goods shall be provided 3 hoses & nozzles in addition to those required above and cargo ship <1000GT, shall be provided no less than 3 fire hoses & nozzles.
    3. 2 ½” diameter and 30ft or 60ft. length.
    4. Nozzle for ER 12mm, 16mm and 19mm size and shall be approved for duel purpose (jet/spray) incorporating shut-off valve.
    5. Fire hoses shall have a length of at least 10 m, but not more than:
    • 15 m in machinery spaces;
    • 20 m in other spaces and open decks; and
    • 25 m for open decks on ships with a maximum breadth in excess of 30 m.

    Read more

    CoC Oral Exam Preparation (Part – 14): Ship’s Certificates

    Certificates onboard:

    1.Certificate of Registry
    2. International Tonnage Certificate
    3. International Load Line Certificate
    4. International Load Line Exemption Certificate
    5. Certificates for Master, Officers and Ratings
    6. Derating or Derating Exemption Certificate
    7. International Oil Pollution Prevention Certificate
    8. International Sewage Pollution Prevention Certificate
    9. International Safety Management Certificate, SMC
    10. International Medical Certificate
    11. Passenger Ship Safety Certificate
    12. Cargo Ship Safety Construction Certificate, SAFCON
    13. Cargo Ship Safety Equipment Certificate, SEC
    14. Cargo Ship Safety Radio Certificate
    15. Exemption Certificates for SAFCON, SEC and Radio Certificate
    16. Certificate of Classification
    17. Certificate of Insurance or other financial security in respect of civil liability for oil pollution damage
    Read more

    A Short Note on Ship’s Energy Efficiency: EEDI, SEEMP & EEOI

    126
    The Energy Efficiency Design Index (EEDI) was made mandatory for new ships and the Ship Energy Efficiency Management Plan (SEEMP) for all ships at MEPC 62 (July 2011) with the adoption of amendments to MARPOL Annex VI (resolution MEPC.203(62)), by Parties to MARPOL Annex VI. This was the first legally binding climate change treaty to be adopted since the Kyoto Protocol. The new MARPOL Annex VI Chapter 4: Energy Efficiency requirements Enter into force on 1 January 2013.

    Energy Efficiency Design Index (EEDI):

    • It is an index quantifying the amount of carbon dioxide that a ship emits in relation to the goods transported.
    • indication of energy efficiency by CO2 emission (g) per cargo carry (ton mile) The actual EEDI of a vessel is called the “attained EEDI” and is calculated based on guidelines published by IMO. The result must be below the limit “required EEDI” prescribed in MARPOL.
    • For existing vessels, the EEDI is in most cases irrelevant. It will become relevant only if a ship undergoes a major conversion that is so extensive that the ship is regarded by the Administration as a newly constructed ship.
    • For new ships, a technical file must be created showing the attained EEDI and its calculation process.
    • The EEDI and the technical file will be subject to verification by the flag administration.

    Read more

    CoC Oral Exam Preparation (Part – 13): Entries of Important Documents

    OIL RECORD BOOK:

    Entries to be made in Oil Record Book as per MARPOL Annex I Requirements:

    Oil Record Book: PART – 1 (MARPOL Annex I Regulation 17): 

    Entries:

    1. Ballasting or Cleaning of fuel oil tanks
    2. Discharge of dirty ballast or cleaning water from fuel oil tanks
    3. Collection , Transfer and disposal of oil residues
    4. Non automatic starting of discharge overboard, transfer or disposal otherwise of bilge water accumulated in machinery spaces
    5. Automatic starting of discharge overboard, transfer or disposal otherwise of bilge water accumulated in machinery spaces
    6. Condition of the oil filtering equipment (Out of order or malfunction)
    7. Accidental or other exceptional discharges of oil
    8. Bunkering of all types of fuel oils or bulk lubricating oils
    9. Additional operational procedures and general remarks
    10. Recording of quantities retained in bilge water holding tanks (listed under section 3.3 of the IOPP Certificate) is voluntary.
    11. The recording of general maintenance of items pertaining to the OWS remains voluntary and is not required to be recorded in the ORB.

    Read more

    CoC Oral Exam Preparation (Part – 12): Stern Tube

    1245Image Credit: www.libramar.net

    Stern Tube:

    The stern tube is a hollow tube-like structure at the stern or rear part of the ship. A ship needs the propeller to drive it forward in water. The propeller, located outside the ship, needs to be connected to the engine inside the ship’s engine room. The propeller shaft is used for connecting the ship’s engine and the propeller. The stern tube is a narrow hole in the hull structure at the rear end (aft peak) of the ship, through which the propeller shaft passes and connects the engine and propeller.

    Stern tube bearings serve two main functions:
    1. To properly connect the propeller to the ship
    2. To keep water from leaking into the stern tube (and lubricant from leaking out)
    Read more

    IMO is on Full Speed Ahead with COP21 Agreement

    COP21_briefing_smallerImage Credit: www.imo.org

    The Paris Climate Change conference (COP21) 2015 Agreement identifies a clear goal on two objectives:

    • holding the increase in the global average temperature to well below 2°C above pre-industrial levels and
    • to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels.

    IMO has contributed over last decade and will continue to contribute to global GHG reduction goals. IMO and its Member States recognise the important need for international shipping, which accounts for 2.2% of CO2 anthropogenic emissions (Third IMO GHG Study 2014) to support global efforts to mitigate the impact of climate change.
    Read more

    CoC Oral Exam Preparation (Part- 11): Propulsion Machinery

    Marine-propulsion-systemImage Credit: Wikipedia.org

    FUEL INJECTION TIMING

    Checking of fuel injection pump timing:

    1. Turn 1 piston to TDC at the beginning of firing stroke.
    2. Turn backward to a point, a little earlier than fuel injection point.
    3. Shut fuel supply to engine, remove No. 1 fuel pump delivery valve assembly and put a bent pipe.
    4. Open fuel supply and when fuel lever is put to running position, oil will flow out at bent pipe.
    5. Turn engine towards TDC in its running direction slowly until fuel cease to flow.
    6. Check the marks on flywheel whether timing position is correct or not.

     Slight difference can be adjusted by:

    For large engine:

    •  Timing can be altered by shifting the camshaft to the position relative to crankshaft, after removing the idler gear between crankshaft and camshaft.
    • Timing can be altered by individual fuel pump cam for adjustable cam type engine.
    • Read more

    CoC Oral Exam Preparation (Part-10): Ship Construction

    Ship_size_(side_view)Image Credit: wikipedia.org

    Definitions and Ship’s Dimensions

    Hull:
    The structural body of a ship including shell plating, framing, decks and bulkheads.
     Afterbody :
    That portion of a ship’s hull abaft midships.
     Forebody:
    That portion of a ship’s hull forward midships.
     Bow :
    The forward of the ship
     Stern :
    The after end of the ship
    Port :
    The left side of the ship when looking forward
    Starboard :
    The right side of the ship when looking forward
    Amidships:
    point midway between the after and forward perpendiculars
    Read more

    CoC Oral Exam Preparation (Part – 9): Refrigeration & Air Conditioner

    header_refrigeration

    Image Credit: almaco.cc

    Refrigeration:

     What is a Refrigerant?

    • Refrigerants are used as working substances in a Refrigeration systems.
    • Fluids suitable for refrigeration purposes can be classified into primary and secondary refrigerants.
    • Primary refrigerants are those fluids, which are used directly as working fluids, for example in vapour compression and vapour absorption refrigeration systems.
    • These fluids provide refrigeration by undergoing a phase change process in the evaporator.
    • Secondary refrigerants are those liquids, which are used for transporting thermal energy from one location to other. Secondary refrigerants are also known under the name brines or antifreezes

    Read more

    Ventilation Arrangement for Hazardous Spaces in Engine Room

    The following engine room spaces are very hazardous on-board the ship and therefore, a special ventilation arrangement should be provided for safe entry:

    (a) CO2 storage compartment
    (b) Battery room
    (c) Purifier flat
    (d) Refrigerating machinery space
    (e) Shaft tunnel

    Ventilation Arrangement for Confined Spaces of Ships:

    (a) CO2 storage compartment
    – CO 2 compartment is situated on open deck , well ventilated and easily accessible .
    – Its compartment door is opened outward.
    – Boundaries between CO2 compartment should be watertight.
    – Ventilation louver is fitted at the bottom near the floor , for the leaky CO2 to release to atmosphere because CO2 is more heavier than normal air.
    – In some ships , exhaust fan is provided . Its suction is taken from bottom of the compartment and lead to open air deck . Exhaust system is separately provided from others.
    – In some modern built ships , CO2 leakage warning alarm is provided
    Read more

    CoC Oral Exam Preparation (Part-7) – Maritime Security

    isps1
    Image Credit: www.msecurity.ru

    When do the security measures come into force ?

    – 1st July, 2004.

    SOLAS amendments adopted in December 2002 :

    Chapter V:
    – Automated Identifications Systems(AIS)

    Chapter XI-1:
    -Ship identification number
    -Continuous Synopsis Record (CSR)

    Chapter XI-2:
    -Measures to enhance maritime security
    -International Ship and Port Facility Security (ISPS) Code (Parts A & B)
    Read more

    CoC Oral Exam Preparation (Part-6) – Boiler Operation & BW Treatment

    Boiler :

    Boiler Automatic Burning System:

    1. With correct water level, steam pressure transmitter initiates cut-in at about 1.0 bar below working pressure.
    2. Steam pressure transmitter initiates Master Relay to allow ‘Air On’ signal to force draught fan.
    3. Air feedback signal confirms ‘Air On’ and allows 30-sec. delay for purge period.
    4. Then Master Relay allows Electrode to strike ‘Arc’.
    5. Arc striking feedback signal confirms through electrode relay and allows 3-sec. delay.
    6. Then Master Relay allows burner solenoid valve for ‘Fuel On’ operation.
    7. Fuel On feedback signal allows 5-sec. delay to proceed.
    8. As soon as receiving Fuel On feedback signal, Master Relay checks ‘Photocell’, which is electrically balanced when light scatter continuously on it.
    9. Result is OK and cycle is completed.
    10. If not, fuel is shut-off, Alarm rings and cycle is repeated.
    11. Steam pressure transmitter initiates cut out automatically at about 1/15 bar above W.P.
    Read more

    Barriers for Adoption of Energy Efficiency Measures in Shipping Industry

    12
    Image Credit: Green4sea.com

    Shipping is the cheapest and most energy-efficient way of transporting cargoes across the world. Over 90% of world trade is carried by the international shipping industry. For the modern world, without shipping, the import and export of goods from one end to another end of the world are not possible. Seaborne trade continues to expand, bringing benefits for consumers through the lowest and decreasing freight costs. There are around 50,000 merchant ships trading internationally for transporting every kind of cargoes. Everyday each of these ships burns tonnes of fossil fuels to produce the power for propulsion and daily operation. Fossil fuels are the major energy sources in today’s world but still when over consumption takes place lead to disastrous effects such as air pollution and climate change. Burning of fossil fuels in large marine diesel engines produces carbon dioxide, carbon monoxide, nitrogen monoxide, nitrogen dioxide, sulphur dioxide etc. that have severe bad effects on the habitats as well as human health.
    Read more

    CoC Oral Exam Preparation (Part- 5) – Boiler

    Exhaust Gas Boilers:

    • About 30% – 34% of Fuel Energy input to engine are discharged to Exhaust Gas, as Thermal Energy.
    • This thermal energy is converted into useful work in Exhaust Gas Boiler.

    Cochran Exhaust Gas Boiler:
    1. A double-pass, vertical type, in which Exhaust gases from ME pass through 2 banks of tube.
    2. Served as an efficient silencer, when the boiler is in use.
    3. A separate Silencer, always fitted along with exhaust gas boiler, to be used when the boiler is generating more steam than required.
    4. All or part of exhaust gases can be directed to the Silencer and atmosphere, without going through the boiler.
    5. Working Pressure is around 7 bars.

    Composite Boiler (Composite type Cochran boiler):

    1. If Exhaust Gases and Oil fire can be used at the same time, it is termed Composite Boiler.
    2. In double-pass, composite type Cochran Boiler, it provides a separate tube nest for exhaust gas passage, situated immediately above the return tube nest from Oil-fired Furnace.
    3. Exhaust gases from Oil-fired Furnace and ME; pass through the tubes, which are surrounded by boiler water.
    4. Separate Uptakes provided for Exhaust Gases and Oil-fired Smoke.
    5. Heavy Changeover Valves are fitted, to divert the gases straight to the funnel, when desired.
    Read more

    CoC Oral Exam Preparation (Part- 4) – Lub Oil & Fuel Oil

    MLT
    Image Credit: lube-oil.in

    Lubricating Oil

    Viscosity:
    1. A measure of internal resistance to flow.
    2. Viscosity of an oil changes with temperature, falling when temperature rises and vice versa.
    3. For crankcase oil, viscosity is between 130 – 240 Sec. Redwood No. 1 at 60°C.
    4. For cylinder oil, viscosity is 12.5 – 22 Cst.

    Viscosity Index, VI:
    1. The rate of change of viscosity of an oil, in relation to change of temperature.
    2. Oil of low VI has greater change of viscosity with change in temperature,
    than the oil of high VI.
    3. For crankcase oil, VI is between 75 – 85; For cylinder oil, VI is 85.
    4. Highest VI of mineral oils is about 115 and with special additives, this may be raised to about 160.
    5. Hydraulic oils, used in remote control hydraulic circuits must have very high VI; otherwise erratic response to the controls can be troublesome. (Telemotor hydraulic system oil has VI of 110.)
    Read more

    CoC Oral Exam Preparation (Part- 3) – Electrical

    images

    image credit: www.rchelectrical.co.uk

    Electrical Survey:

    Electrical equipment inspected and tested, during complete engine survey, at 4 years interval.
    Such a survey is prescribed, under the rules and regulations for the classification of ship.
    Following survey items generally apply to all ships:
    1. Generators and governors.
    2. Circuit breakers
    3. Switchboard and fittings (main and emergency switchboard, distributor switchboard).
    4. Cables
    5. Insulation resistance
    6. Motors and Starters
    7. Emergency power equipment
    8. Parts of steering gear
    9. Navigation light indicator
    Read more

    CoC Oral Exam Preparation (Part- 2) – Survey & Certification

    images (1)

    Image Credit: Marinelink

    Survey:

    Authorised independent examination, investigation, and inspection, measuring or testing of ship structure, machinery and equipment, done and supervised by Surveyors appointed by regulatory or commercial organisations.

    Classification Societies:
    They are third party independent bodies e.g. ABS (American Bureau of Shipping), BV (Bureau Veritas), LR (Lloyd’s Register), ClassNK (Nippon Kaiji Kyokai), DNV (Det Norske Veritas), GL (Germanischer Lloyd).

    Their functions:
    1. To ensure that ship is soundly constructed and the standard of construction is maintained.
    2. Carried out Statutory Survey on behalf of the Administration regarding the ship safety and prevention of pollution of marine environment.
    Read more

    CoC Oral Exam Preparation (Part- I) – Machinery

    MAN-B&W-K98MC-74760kw
    Source: MAN Diesel (MAN-B&W-K98MC)

    Cylinder liner wears:
    1) Normal frictional wear: Due to metal to metal contact with high surface asperities under
    marginal lubrication condition.
    2) Abrasive wear: Due to presence of hard foreign particles from fuel, LO, and air.
    3) Corrosive wear:Due to H₂SO₄ acid attack owing to sulphur within fuel. Only 0.1% of sulphur content causes corrosive wear, like hot and cold corrosion, and the rest carried away by exhaust gas. Sulphuric acid dew point = 120΄C to 160΄C.

    Hot corrosion occurs at 460 – 570΄C.
    Due to HCl acid attack, because of salts in air, charge air cooler leakage,
    sea water in fuel and LO.

    Other related causes:
    1. Unsuitable liner material.
    2. Incorrect ring clearance.
    3. Misalignment of piston and liner.
    4. Insufficient LO or improper arrangement of cylinder lubrication.
    5. Cylinder oil having too low viscosity or alkalinity.
    6. Cylinder oil containing abrasive particles.
    7. Using of low sulphur fuel, in conjunction with high TBN cylinder oil.
    8. Improper grade of fuel, and improper combustion.
    9. Improper running-in, without high cylinder oil feed rate.
    10. Overloading of engine.
    11. Too low scavenge air temperature, leading to dew point corrosion.
    Read more

    DIESEL ENGINE CRANKCASE EXPLOSION

    INTRODUCTION:

    For any fire to begin, the fire tringle needs to be completed. To complete a fire tringle there must be present of a combustible material, oxygen or air to support combustion and a source of heat in proportional ratio and within the flammable limits, the reaction which causes fire or explosion becomes cyclic.

    2416324888_fbde60a9c5
    Image Credit: www.brighthubengineering.com

    Crankcase explosion normally occurs in trunk engine in which the lubricating oil used in the bearings is splashed around the crankcase and broken down into moderate size particles.
    The main cause of crankcase explosions are the development of hot spots at various places in the crankcase. Due to the reciprocating motion of the piston the lubricating oil in the crankcase is splashed in the air.
    Read more

    Diesel Engine Scavenge Fire

    INTRODUCTION: 

    For any fire to begin, the fire tringle needs to be completed. To complete a fire tringle there must be present a combustible material, oxygen or air to support combustion and a source of heat at a temperature high enough to start combustion.
    1
    Source: www.marinediesels.info

    In the case of scavenge fires:
     the combustible material is oil. The oil can be cylinder oil which has drained down from the cylinder spaces, or crankcase oil carried upwards on the piston rod because of a faulty stuffing box. In some cases the cylinder oil residues may also contain fuel oil. The fuel may come from defective injectors, injectors with incorrect pressure setting, fuel particles striking the cylinders and other similar causes.
     The oxygen necessary for combustion comes from the scavenge air which is in plentiful supply for the operation of the engines.
     The source of heat for ignition comes from piston blow-by, slow ignition and afterburning, or excessive exhaust back pressure, which causes a blowback through the scavenge ports.
    Read more

    Latest Development on EU-MRV

    ships_pollution
    Monitoring Reporting & Verification (MRV) is a standardised method to produce an accurate CO2 emissions inventory, through the quantification of CO2 emissions. The key principles of the scheme are to generate robust results using a lean approach considering parameters which are already monitored during normal operations.
    It is advocated as a way of monitoring a ship’s fuel consumption and its operational energy efficiency performance.

    MRV is still under discussion in IMO and they will come up with a decision in next MEPC. The new EU Regulation 2015/757 came into force on 1 July 2015 and operating from 2018.

    There is a MEPC Working Group active on the subject:
     A corresponding working group and pilot testing of various schemes are encouraged.
     Work has significantly progressed and is likely to finalise in 2016.

    Read more

    A simple Example of Energy Efficiency Concept

    Energy efficiency

    Energy efficiency is a very broad term referring to the many different ways we can get the same amount of work (light, heat, motion, etc.) done with less energy. It covers efficient cars on the roads, efficient ships in the waters, improved industrial practices, better building insulation and a host of other technologies. Since saving energy and saving money often amount to the same thing, energy efficiency is highly profitable and great contributor for the climate change issue. Energy efficiency often has multiple positive effects.
    Read more

    Algae to crude oil – Innovation of a Green Energy Source

    download (1)
    Image Source: www.pnnl.gov

    The PNNL (Pacific Northwest National Laboratory) Engineers have created a continuous chemical process that produces useful crude oil minutes after they pour in harvested algae — a verdant green paste with the consistency of pea soup.

    In the PNNL process, a slurry of wet algae is pumped into the front end of a chemical reactor. Once the system is up and running, out comes crude oil in less than an hour, along with water and a by-product stream of material containing phosphorus that can be recycled to grow more algae.

    Read more

    Cylinder Lubrication System

    images

    Cylinder lubrication in a low-speed main propulsion diesel engine:

    Cylinder lubrication For marine diesel engines operating on residual fuels containing sulphur, cylinder lubrication must generally serve the following purposes:
    ■ Create and maintain an oil film to prevent metal to metal contact between the cylinder liner and piston rings.
    ■ Neutralise sulphuric acid in order to control corrosion.
    ■ Clean the cylinder liner, and particularly the piston ring pack, to prevent malfunction and damage caused by combustion and neutralisation residues.

    Read more

    The Triple E Ship’s Concept for More Energy Efficiency

    triple-e-ship-shape
    Image Credit: www.maersk.com

    The Triple E Ships can be more energy efficient and more environment friendly. Triple-E (EEE) stands for Energy efficient, Economy of scale and Environmentally improved vessel:

    Energy Efficiency:
    Triple-E ships are designed and optimised for lower speeds. The unique hull design, energy-efficient engine and system that uses exhaust gas to produce extra energy to help propel the ship, make the Triple-E unmatched in energy efficiency.
    Read more

    Novec 1230- the Next Generation of Halon and CO2

    fm-novec_system_3
    Image Credit: www.protec.co.uk

    Novec 1230, C6F12O, (3M Novec 1230) fluid is a low global warming potential Halon replacement for use as a gaseous fire suppression agent. Novec 1230 is manufactured by 3M. This Fire Protection Fluid is an advanced, “next-generation” halon and CO2 replacement, offering a number of important advantages over other clean agents and CO2 in marine applications. With zero ozone depletion potential, short atmospheric lifetime and a global warming potential of 1, Novec 1230 fluid has proven to be the first chemical halon replacement to offer a viable, long-term, sustainable solution for marine fire protection.

    Read more

    On the way of innovation- the Most Energy Efficient Car!

    123
    Impressive news from the new Prototype CNG category late yesterday afternoon: team Microjoule-La Joliverie pulled off a 2,521km/litre equivalent first attempt (imagine driving from Rotterdam to Palermo on one litre). New category, new benchmark.

    The first UrbanConcept challenge started this morning. First on track was Louis Delage School from France with their gasoline car, pulling off 476km/litre equivalent to lead their category and set a new record. French Team IUT GMP Valenciennes from France have set a record of 1,323km/l in the Prototype diesel category.

    Read more

    Problems in Boilers

    Boiler-Maintenance-Repair94926492aff64df7962dc137ded70501

    Image Credit:www.globalspec.com

     

    Some common boiler problems are described below:

    Fires

    Cleanliness of the heat recovery surfaces after the boiler can often be judged by observing the gas pressure differential above and below. Any significant rise in this value should be attended to. Whilst good combustion conditions will minimise the risk, deposits allowed to accumulate in this area are a fire risk and, should fire take hold undetected, it can prove impossible to control and can wreck the heat exchanger, or even the whole boiler. There is plenty of evidence of soot fires leading on to hydrogen fires.

    Read more

    Fuel Injector of Diesel Engines

    Fuel_injector_complete
    Image Credit: www.riceweightloss.com

    Older loop scavenged engines may have a single injector mounted centrally in the cylinder head. Because the exhaust valve is in the centre of the cylinder head on modern uniflow scavenged engines the fuel valves (2 or 3) are arranged around the periphery of the head.
    The pressure at which the injector operates can be adjusted by adjusting the loading on the spring. The pressure at which the injectors operate vary depending on the engine, but can be as high as 540bar.

    FUEL INJECTOR

    Read more

    Latest Development on Energy-efficiency in International Shipping by IMO (MEPC 68th session)

    (Energy-efficiency and air pollution implementation at IMO environment meeting, Marine Environment Protection Committee (MEPC), 68th session.11-15 May 2015)

    Seagull clean ocean_LA_2
    Further development of energy-efficiency guidelines for ships

    The MEPC continued its work on further developing guidelines to assist in the implementation of the mandatory energy-efficiency regulations for international shipping and:

    • adopted amendments to update the 2014 Guidelines on survey and certification of the Energy Efficiency Design Index (EEDI) and endorsed their application from 1 September 2015, at the same time encouraging earlier application;
    Read more

    Boiler Water Treatment

    44

    In the draft “Code of practice for the design, safe operation, maintenance and servicing of boilers”, a requirement is made for regular water-quality monitoring of both limited-attendance boilers and unattended boilers.

    Read more

    Audi E-Diesel- Fuel of The Future

    audi-fuel
    After a commissioning phase of just four months, the research facility in Dresden started producing its first batches of high‑quality diesel fuel a few days ago.
    The Dresden energy technology corporation sunfire is Audi’s project partner and the plant operator. It operates according to the power‑to‑liquid (PtL) principle and uses green power to produce a liquid fuel. The only raw materials needed are water and carbon dioxide. The CO2 used is currently supplied by a biogas facility. In addition, initially a portion of the CO2 needed is extracted from the ambient air by means of direct air capturing, a technology of Audi’s Zurich‑based partner Climeworks.
    Read more

    Mobile and Internet Services for Cruise Ships by MCP

    33 Cruise-Ships with Mobile and Internet Services from MCP.

    stena-saga

    09 January 2015, Arendal, Norway: MCP has signed a long-term contract with Carnival Corporation to provide 33 cruise ships with advanced mobile cellular communication services. The agreement provides close to 130,000 people each day mobile voice, texting (SMS) and data (mobile internet) coverage while at sea.
    Read more

    Electric Mobility: Hybrid Electric Ship

    By Siemens.

    1411241819405
    Today, the frequency converter, by way of the electric motor, controls the propeller rotation speed directly. As a result, the propeller can turn much more slowly. In order to maintain a vessel’s position at sea or to move at very slow speeds, the amount of propulsion needed is sometimes so minimal that it need not be more than the power to adjust the pitch of the propeller blades.
    Read more

    Flettner Rotors- The Wind Turbines as Ship’s Propulsion

    By Enercon GmbH.

    arti_e-ship
    The E Ship 1, with four tall pillars rising vertically from the ship, two forward and two aft, is using Flettner rotors as ship’s propulsion. The Flitner rotors technology was first developed in the 1920s by German engineer Anton Flettner. They are in essence, motor powered sails, 27 meters tall and 4 meters in diameter. The spinning vertical rotors develop aerodynamic lift using the Magnus effect. As the wind blows across the spinning rotors, they develop lift similar that of an airfoil shape of a conventional sail. Unlike masts and sails, however, the vertical Flettner rotor does not interfere with cargo operations. The Flettner rotors are expected to save 30-40% in fuel costs at 16 knots.
    Read more

    Sky Sails Propulsion for Ships

    12
    (Image Credit: SkySails GmbH)

    Wind is the cheapest, most powerful, and greenest source of energy on the high seas.

    With SkySails, modern cargo ships can use the wind as a source of power – not only to lower fuel costs, but significantly reduce emission levels as well.

    The worldwide patented SkySails propulsion system consists of three main components:
    i. A towing kite with rope,
    ii. A launch and recovery system, and
    iii. A control system for automated operation.
    Read more

    Wartsila’s New Fuel-efficient Tanker Design

    wartsila_tanker
    Image: Wärtsilä

    The new Aframax design emphasizes energy efficiency to provide lower operating costs and enhanced environmental performance. The ship features an optimized hull form to minimize resistance, and an optimized propulsion train with energy saving devices (ESDs) for greater efficiency. Fuel savings have also been the primary focus. The ship meets the current and forthcoming emissions legislation.
    Read more

    A Combined Wind & Solar Power Solution for Ships

    By Greg Atkinson, Eco Marine Power.

    A Combined Wind & Solar Power Solution for Ships

    From small powered pleasure craft and ferries to large super-tankers, the limitless energy of the wind and sun can be used in order to help power ships thereby reducing fuel consumption, the emission of greenhouse gases (GHGs) and noxious exhaust emissions.

    Unlike land based renewable energy solutions such as solar or wind farms, the area or space available on ships for installing wind & solar power systems is quite limited. Taking this into account it would appear advantageous to develop a system that can use both wind and solar power as energy sources plus harness this energy via the same system.
    Read more

    Impressed Current Cathodic Protection (ICCP) System

    HOW DOES AN ICCP SYSTEM WORK?

    – Using an arrangement of hull mounted anodes and reference cells connected to a control panel(s), the system produces a more powerful external current to suppress the natural electro-chemical activity on the wetted surface of the hull.

    123
    (Image Credite: www.cathelco.com)

    – This eliminates the formation of aggressive corrosion cells on the surface of plates and avoids the problems which can exist where dissimilar metals are introduced through welding or brought into proximity by other components such as propellers.
    Read more

    Waste Heat Recovery System

    siemens

    Waste Heat Recovery System (WHRS) uses exhaust gas from the diesel propulsion system to produce additional energy cleanly and inexpensively. By reducing energy costs by up to 12%, reducing CO2 and NOX emissions, and significantly lowering maintenance expenditures, the system gives you a competitive edge.
    Read more

    Green Ship Technology for Energy Saving by Air Carpet

    maxresdefault
    Image credit: Mitsubishi
    Accelerating the development of innovative technologies to reduce CO2 emissions from vessels is essential to both cope with rising fuel costs and to improve the world environment. This can be achieved through the development of various CO2 abatement technologies, such as low-friction coatings, hybrid contra-rotating propulsion systems, solar power, and liquefied natural gas-fueled plants. We focus on the proprietary Mitsubishi Air-Lubrication System (MALS), which reduces frictional resistance between the vessel hull and seawater using air bubbles along the bottom of the vessel.
    Read more

    Thrust Bearing Clearance

    TM-9-2815-255-24_205_1

    Thrust Bearing Clearance:
    Measure main thrust journal width and thrust bearing width, refer to FIGURE 1, as follows:
    (1)Measure width of main thrust journal with an inside micrometer.
    (2)New main thrust journal width is 1.531 to 1.535 inches (38.90 to 39.00 mm).
    (3)If width is not within specification, recondition crankshaft and install an oversize thrust washer set. If widthis correct, measure main thrust bearing width.FIGURE 1. Measuring Main Thrust Journal and Thrust Bearing Width.
    Read more

    1 2